| [1] | 张贤达, 保铮. 非平稳信号分析与处理[M]. 北京: 国防工业出版社, 1998: 1–3. ZHANG Xianda and BAO Zheng. Non-stationary Nonlinear Signal Analysis and Processing[M]. Beijing: National Defense Industry Press, 1998: 1–3. |
| [2] | COHEN L. Time-frequency Analysis[M]. Englewood Cliffs: Prentice Hall, 1995: 44–195. |
| [3] | FLANDRIN P. Time-Frequency/Time-Scale Analysis[M]. Cambridge: Academic Press, 1999: 1–386. |
| [4] | DAUBECHIES I, LU Jianfeng, and WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243–261. doi: 10.1016/j.acha.2010.08.002 |
| [5] | HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193 |
| [6] | AUGER F and FLANDRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068–1089. doi: 10.1109/78.382394 |
| [7] | OBERLIN T, MEIGNEN S, and PERRIER V. The Fourier-based synchrosqueezing transform[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 315–319. doi: 10.1109/ICASSP.2014.6853609. |
| [8] | PHAM D H and MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis—With an application to gravitational-wave signal[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3168–3178. doi: 10.1109/TSP.2017.2686355 |
| [9] | OBERLIN T and MEIGNEN S. The second-order wavelet synchrosqueezing transform[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3994–3998. doi: 10.1109/ICASSP.2017.7952906. |
| [10] | WANG Shibin, CHEN Xuefeng, SELESNICK I W, et al. Matching synchrosqueezing transform: A useful tool for characterizing signals with fast varying instantaneous frequency and application to machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 100: 242–288. doi: 10.1016/j.ymssp.2017.07.009 |
| [11] | HERRY C L, FRASCH M, SEELY A J, et al. Heart beat classification from single-lead ECG using the synchrosqueezing transform[J]. Physiological Measurement, 2017, 38(2): 171–187. doi: 10.1088/1361-6579/aa5070 |
| [12] | HE Kuanfang, LI Qi, and YANG Qing. Characteristic analysis of welding crack acoustic emission signals using synchrosqueezed wavelet transform[J]. Journal of Testing and Evaluation, 2018, 46(6): 2679–2691. doi: 10.1520/JTE20170218 |
| [13] | LI Lin, CAI Haiyan, JIANG Qingtang, et al. An empirical signal separation algorithm for multicomponent signals based on linear time-frequency analysis[J]. Mechanical Systems and Signal Processing, 2019, 121: 791–809. doi: 10.1016/j.ymssp.2018.11.037 |
| [14] | STANKOVIĆ L. A measure of some time-frequency distributions concentration[J]. Signal Processing, 2001, 81(3): 621–631. doi: 10.1016/S0165-1684(00)00236-X |
| [15] | FUSCUS E. Digitized 2.5 microsecond echolocation pulse emitted by the Large Brown Bat[EB/OL]. https://www.ece. rice.edu/dsp/software/bat.shtml, 2017. |