[1] 佘青山, 陈希豪, 高发荣. 基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法[J]. 电子与信息学报, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851

SHE Qingshan, CHEN Xihao, and GAO Farong. Feature extraction of electroencephalography based on LASSO-Granger causality between brain region of interest[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851
[2] BALCONI M and MAZZA G. Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band[J]. International Journal of Psychophysiology, 2009, 74(2): 158–165. doi: 10.1016/j.ijpsycho.2009.08.006
[3] 吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314–318.

LV Jun, XIE Shengli, and ZHANG Jinlong. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics &Information Technology, 2009, 31(2): 314–318.
[4] 陈强, 陈勋, 余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法[J]. 电子与信息学报, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209

CHEN Qiang, CHEN Xun, and YU Fengqiong. Removal of muscle artifact from EEG data based on independent vector analysis[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209
[5] CHEN Minyou, FANG Yonghui, and ZHENG Xufei. Phase space reconstruction for improving the classification of single trial EEG[J]. Biomedical Signal Processing & Control, 2014, 11(1): 10–16. doi: 10.1016/j.bspc.2014.02.002
[6] HAMID M and ZABIHOLLAH S M. Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization[J]. Biomedical Signal Processing & Control, 2017, 32: 69–75. doi: 10.1016/j.bspc.2016.10.015
[7] PATTNAIK S, DASH M, and SABUT S K. DWT-based feature extraction and classification for motor imaginary EEG signals[C]. International Conference on Systems in Medicine and Biology, Kharagpur, India, 2016: 186–201.
[8] 徐佳琳, 左国坤. 基于互信息与主成分分析的运动想象脑电特征选择算法[J]. 生物医学工程学杂志, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036

XU Jialin and ZUO Guokun. Motor imagery electroencephalogram feature selection algorithm based on mutual information and principal component analysis[J]. Journal of Biomedical Engineering, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036
[9] 罗志增, 周镇定, 周瑛. 双树复小波特征在运动想象脑电识别中的应用[J]. 传感技术学报, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001

LUO Zhizeng, ZHOU Zhending, and ZHOU Ying. The application of DTCWT feature in recognition of motor imagery[J]. Journal of Sensors and Actuators, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001
[10] 周瑛. 虚拟场景下运动想象脑电信号识别研究[D]. [硕士论文], 杭州电子科技大学, 2013.

ZHOU Ying. The research of motor imagery recognition in virtual reality[D]. [Master dissertation], Hangzhou Dianzi University, 2013.
[11] AL-QAZZAZ N K, HAMID B M A S, AHMAD S A, et al. Automatic artifact removal in EEG of normal and demented individuals using ICA-WT during working memory tasks[J]. Sensors, 2017, 17(6): 1–25. doi: 10.3390/s17061326
[12] GHORBANIAN P, DEVILBISS D M, VERMA A, et al. Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform[J]. Annals of Biomedical Engineering, 2013, 41(6): 1243–1257. doi: 10.1007/s10439-013-0795-5
[13] HASSAN A R and BHUIYAN M I H. An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting[J]. Neurocomputing, 2017, 219: 76–87. doi: 10.1016/j.neucom.2016.09.011
[14] BENJAMIN B. BCI Competition II[OL]. http://www.bbci.de/competition/ii/, 2003.
[15] BENJAMIN B. BCI Competition III[OL]. http://www.bbci.de/competition/iii/, 2005.
[16] VIDAURRE C, SCHLOGL A, CABEZA R, et al. A fully on-line adaptive BCI[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(6): 1214–1219. doi: 10.1109/TBME.2006.873542
[17] BAYRAM I and SELESNICK I W. Frequency-domain design of overcomplete rational-dilation wavelet transforms[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 2957–2972. doi: 10.1109/TSP.2009.2020756
[18] IVAN S. Tunable Q-factor wavelet transform[OL]. http://eeweb.poly.edu/iselesni/TQWT/index.html, 2016.
[19] SELESNICK I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560–3575. doi: 10.1109/TSP.2011.2143711
[20] AMIN H U, MALIK A S, AHMAD R F, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(1): 139–149. doi: 10.1007/s13246-015-0333-x
[21] LAWHERN V, HAIRSTON W D, MCDOWELL K, et al. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models[J]. Journal of Neuroscience Methods, 2012, 208(2): 181–189. doi: 10.1016/j.jneumeth.2012.05.017
[22] PHOTHISONOTHAI M and NAKAGAWA M. EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface[J]. IEICE Transactions on Information and Systems, 2008, 91(1): 44–53. doi: 10.1093/ietisy/e91-d.1.44
[23] 訾艳阳, 胥永刚, 何正嘉. 离散振动信号分形盒维数的改进算法和应用[J]. 机械科学与技术, 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021

ZI Yanyang, XU Yonggang, and HE Zhengjia. Fractal box dimension of discrete vibration signals[J]. Mechanical Science and Technology for Aerospace Engineering, 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021
[24] GUPTA S and SAINI H. EEG features extraction using PCA plus LDA approach based on L1-norm for motor imaginary classification[C]. IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 2015: 1–5.
[25] SCHLOGL A, KEINRATH C, SCHERER R, et al. Information transfer of an EEG-based brain computer interface[C]. International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 2003: 641–644.
[26] FELE-ZORZ G, KAVSEK G, NOVAK-ANTOLIC Z, et al. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups[J]. Medical & Biological Engineering & Computing, 2008, 46(9): 911–922. doi: 10.1007/s11517-008-0350-y