图共 11个 表共 3
    • 图  1  I/Q正交调制发射机

      Figure 1. 

    • 图  2  I/Q调制器畸变的视觉表现

      Figure 2. 

    • 图  3  滤波器畸变的视觉表现

      Figure 3. 

    • 图  4  振荡器畸变的视觉表现

      Figure 4. 

    • 图  5  功率放大畸变的视觉表现

      Figure 5. 

    • 图  6  矢量图灰度图像

      Figure 6. 

    • 图  7  深度残差网络的网络结构

      Figure 7. 

    • 图  8  残差单元个数对识别性能的影响

      Figure 8. 

    • 图  9  符号个数对识别性能的影响

      Figure 9. 

    • 图  10  过采倍数对识别性能的影响

      Figure 10. 

    • 图  11  不同算法的识别性能

      Figure 11. 

    • 算法文献[6]算法文献[8]算法文献[9]算法文献[10]算法文献[14]算法本文算法
      复杂度$O\left( {ML\lg \left( {ML} \right)} \right) + O\left( S \right)$$O\left( {ML} \right) + O\left( L \right)$$O\left( {ML} \right) + O\left( L \right)$$O\left( {ML} \right) + O\left( L \right)$$O\left( {PQ\lg Q} \right) + O\left( S \right)$$O\left( {ML} \right) + O\left( S \right)$

      表 1  不同算法的复杂度对比

    • 辐射源1234567
      $g$0.02990.01880.0081–0.0025–0.0128–0.0230–0.0329
      $\phi $0.01370.00930.00500.0006–0.0038–0.0081–0.0125
      ${c_{\rm I}}$0.01420.00970.00520.0007–0.0038–0.0083–0.0128
      ${c_{\rm Q}}$0.01470.01020.00570.0012–0.0033–0.0078–0.0123
      ${a_n}$–0.0640–0.0429–0.0218–0.00070.02040.04150.0627
      ${b_n}$–0.0740–0.0498–0.0256–0.00140.02280.04700.0713
      ${c_{\rm o}}$0.00020.00100.00180.00260.00340.00420.0050
      ${\lambda _3}$–0.2915–0.0079i–0.0003–0.0004i–0.4371–0.0092i–0.1459–0.0066i–0.5827–0.0096i–0.0731–0.0042i–0.3643–0.0085i
      ${\lambda _5}$0.0295+0.0005i0.0001+0.0004i0.0821+0.0048i0.0338+0.0014i0.0537+0.0029i0.0571+0.0035i0.0484+0.0022i

      表 2  不同辐射源的畸变参数

    • RN246810
      conv17×7, 32, stride2
      max pool3×3, stride 2
      conv2_x$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$
      conv3_x$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$
      conv4_x$\left[ \begin{array}{l} 3 \times 3,128 \\ 3 \times 3,128 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,128 \\ 3 \times 3,128 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,128 \\ 3 \times 3,128 \\ \end{array} \right] \times 2$
      conv5_x$\left[ \begin{array}{l} 3 \times 3,256 \\ 3 \times 3,256 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,256 \\ 3 \times 3,256 \\ \end{array} \right] \times 2$
      conv6_x$\left[ \begin{array}{l} 3 \times 3,512 \\ 3 \times 3,512 \\ \end{array} \right] \times 2$
      avg pool5-d fc, softmax
      参数量3.9×1041.7×1056.8×1052.7×1061.1×107
      训练时间 (s)0.35160.38580.40190.42620.4584

      表 3  网络结构及其参数量和单批次训练时间