| [1] | KARIMI J and POURTAKDOUST S H. Optimal maneuver-based motion planning over terrain and threats using a dynamic hybrid PSO algorithm[J]. Aerospace Science and Technology, 2013, 26(1): 60–71. doi: 10.1016/j.ast.2012.02.014 |
| [2] | FRAZZOLI E, DAHLEH M A, and FERON E. Real-time motion planning for agile autonomous vehicles[C]. Proceedings of 2001 American Control Conference, Arlington, USA, 2001: 43–49. |
| [3] | AUSTIN F, CARBONE G, FALCO M, et al. Game theory for automated maneuvering during air-to-air combat[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1143–1149. doi: 10.2514/3.20590 |
| [4] | VIRTANEN K, RAIVIO T, and HÄMÄLÄINEN R P. Decision theoretical approach to pilot simulation[J]. Journal of Aircraft, 1999, 36(4): 632–641. doi: 10.2514/2.2505 |
| [5] | ZHONG Lin, TONG Ming’an, ZHONG Wei, et al. Sequential maneuvering decisions based on multi-stage influence diagram in air combat[J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 551–555. doi: 10.1016/S1004-4132(07)60128-5 |
| [6] | MA Yaofei, MA Xiaole, and SONG Xiao. A case study on air combat decision using approximated dynamic programming[J]. Mathematical Problems in Engineering, 2014, 2014: 183401. doi: 10.1155/2014/183401 |
| [7] | 黄长强, 赵克新, 韩邦杰, 等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447–2452. doi: 10.11999/JEIT180068 HUANG Changqiang, ZHAO Kexin, HAN Bangjie, et al. Maneuvering decision-making method of UAV based on approximate dynamic programming[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2447–2452. doi: 10.11999/JEIT180068 |
| [8] | PONTANI M and CONWAY B A. Numerical solution of the three-dimensional orbital pursuit-evasion game[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 474–487. doi: 10.2514/1.37962 |
| [9] | ZHANG Yu, CHEN Jing, and SHEN Lincheng. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control[J]. Chinese Journal of Aeronautics, 2013, 26(4): 1038–1056. doi: 10.1016/j.cja.2013.04.040 |
| [10] | PRÉVOST C G, THÉRIAULT O, DESBIENS A, et al. Receding horizon model-based predictive control for dynamic target tracking: A comparative study[C]. Proceedings of AIAA Guidance, Navigation, and Control Conference, Chicago, 2013. |
| [11] | ERNEST N, COHEN K, KIVELEVITCH E, et al. Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles[J]. Unmanned Systems, 2015, 3(3): 185–204. doi: 10.1142/S2301385015500120 |
| [12] | VIERTL R and SUNANTA O. Fuzzy Bayesian inference[J]. METRON, 2013, 71(3): 207–216. doi: 10.1007/s40300-013-0026-8 |
| [13] | DONG Yiqun and AI Jianliang. Trial input method and own-aircraft state prediction in autonomous air combat[J]. Journal of Aircraft, 2012, 49(3): 947–954. doi: 10.2514/1.C031671 |
| [14] | WANG Dong, ZU Wei, CHANG Hongxing, et al. Research on automatic decision making of UAV based on plan goal graph[C]. Proceedings of IEEE International Conference on Robotics and Biomimetics, Qingdao, 2016: 1245–1249. |
| [15] | WANG Tian, QIN Ruoxi, CHEN Yang, et al. A reinforcement learning approach for UAV target searching and tracking[J]. Multimedia Tools and Applications, 2019, 78(4): 4347–4364. doi: 10.1007/s11042-018-5739-5 |
| [16] | 傅莉, 谢怀福, 孟光磊, 等. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报, 2015, 41(11): 1994–1999. FU Li, XIE Huaifu, MENG Guanglei, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994–1999. |
| [17] | MCGREW J S, HOW J P, WILLIAMS B, et al. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1641–1654. doi: 10.2514/1.46815 |
| [18] | ALZUGARAY I, TEIXEIRA L, and CHLI M. Short-term UAV path-planning with monocular-inertial SLAM in the loop[C]. Proceedings of 2017 IEEE International Conference on Robotics and Automation, Singapore, 2017: 2739–2746. |
| [19] | YU Xiang, ZHOU Xiaobin, and ZHANG Youmin. Collision-free trajectory generation for UAVs using Markov decision process[C]. Proceedings of 2017 International Conference on Unmanned Aircraft Systems, Miami, USA, 2017: 56–61. |
| [20] | WU Zhenglong, GUAN Zhenyu, YANG Chengwei, et al. Terminal guidance law for UAV based on receding horizon control strategy[J]. Complexity, 2017, 2017: 2750172. doi: 10.1155/2017/2750172 |
| [21] | 罗元强, 孟光磊. 基于马尔科夫网络的无人机机动决策方法研究[J]. 系统仿真学报, 2017, 29(S1): 106–112. doi: 10.16182/j.issn1004731x.joss.2017S1015 LUO Yuanqiang and MENG Guanglei. Research on UAV maneuver decision-making method based on Markov network[J]. Journal of System Simulation, 2017, 29(S1): 106–112. doi: 10.16182/j.issn1004731x.joss.2017S1015 |
| [22] | 龚松波, 张维昊, 马红亮, 等. 基于目标态势评估的无人机系统自主决策技术研究[J]. 飞机设计, 2017, 37(3): 7–9. doi: 10.19555/j.cnki.1673-4599.2017.03.002 GONG Songbo, ZHANG Weihao, MA Hongliang, et al. The research UAVS autonomous decision-making technology based on target situation assessment[J]. Aircraft Design, 2017, 37(3): 7–9. doi: 10.19555/j.cnki.1673-4599.2017.03.002 |
| [23] | 任天助, 周锐, 李浩. 一种基于情感智能的无人机自主决策方法[J]. 电光与控制, 2017, 24(3): 11–15, 19. doi: 10.3969/j.issn.1671-637X.2017.03.003 REN Tianzhu, ZHOU Rui, and LI Hao. An emotional intelligence based autonomous decision-making method for UAVs[J]. Electronics Optics &Control, 2017, 24(3): 11–15, 19. doi: 10.3969/j.issn.1671-637X.2017.03.003 |
| [24] | 张彬超, 寇雅楠, 邬蒙, 等. 基于深度置信网络的近距空战态势评估[J]. 北京航空航天大学学报, 2017, 43(7): 1450–1459. doi: 10.13700/j.bh.1001-5965.2016.0956 ZHANG Binchao, KOU Yanan, WU Meng, et al. Close-range air combat situation assessment using deep belief network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1450–1459. doi: 10.13700/j.bh.1001-5965.2016.0956 |