图共 5个 表共 5
    • 图  1  网络整体结构

      Figure 1. 

    • 图  2  注意力模型网络结构

      Figure 2. 

    • 图  3  分级网络中每一级的识别结果

      Figure 3. 

    • 图  4  数据集部分属性间相关性及其共现概率

      Figure 4. 

    • 图  5  网络参数及改进效果对比

      Figure 5. 

    • 属性类(G)属性数量(k)
      Gendermale, female2
      Agechild, teenager, adult, old4
      Hair lengthlong, short2
      Length of lower-body clothinglong, short2
      Type of lower-body clothingpants, dress2
      Wearing hatyes, no2
      Carrying bagyes, no2
      Carrying backpackyes, no2
      Carrying handbagyes, no2
      Color of upper-body clothingblack, white, red, purple,yellow, gray, blue, green8
      Color of lower-body clothingblack, white, pink, purple,yellow, gray, blue, green, brown9

      表 1  Market1501数据集中的属性类别

    • 行人属性genderagehairL.slvL.lowS.clothB.packH.bagbaghatC.upC.lowmean
      基础网络82.1885.3280.1292.4871.5885.6779.5781.5479.6670.5691.2387.8182.31
      本文算法90.2788.1591.5493.5587.2590.4889.7787.6584.6787.3992.4493.4889.72

      表 2  Market1501数据集各属性识别准确率(%)

    • 行人属性genderhatbootsL.upB.packH.bagbagC.shoesC.upC.lowmean
      基础网络82.4775.4876.1473.5871.5869.4278.3168.5462.1751.2470.89
      本文算法83.5987.2484.5676.3377.1175.3283.7872.1974.8862.1877.72

      表 3  DukeMTMC数据集各属性识别准确率(%)

    • 方法Rank-1mAP
      XQDA[11]43.822.2
      SCS[12]51.926.3
      DNS[13]61.035.6
      G-SCNN[14]65.839.5
      MSCAN[15]80.357.5
      PDC[16]84.163.4
      JLML[17]85.165.5
      HA-CNN[8]91.275.7
      基础网络82.461.2
      基础网络-R185.766.7
      基础网络-R288.470.3
      基础网络-C186.968.5
      本文算法93.176.2

      表 4  Market1501数据集行人再识别结果(%)

    • 方法Rank-1mAP
      BoW+KISSME[18]25.112.2
      LOMO+XQDA[11]30.817.0
      ResNet50[19]65.245.0
      ResNet50+LSRO[20]67.747.1
      JLML[17]73.356.4
      HA-CNN[8]80.563.8
      基础网络73.655.7
      基础网络-R175.357.4
      基础网络-R277.860.8
      基础网络-C178.361.2
      本文算法81.765.9

      表 5  DukeMTMC数据集行人再识别结果(%)