| [1] | GANTZ J and REINSEL D. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far East[R]. IDC iView, 2012: 1–16. |
| [2] | EXTANCE A. How DNA could store all the world’s data[J]. Nature, 2016, 537(7618): 22–24. doi: 10.1038/537022a |
| [3] | ZHIRNOV V, ZADEGAN R M, SANDHU G S, et al. Nucleic acid memory[J]. Nature Materials, 2016, 15(4): 366–370. doi: 10.1038/nmat4594 |
| [4] | COLQUHOUN H and LUTZ J F. Information-containing macromolecules[J]. Nature Chemistry, 2014, 6(6): 455–456. doi: 10.1038/nchem.1958 |
| [5] | 王君珂, 印珏, 牛人杰, 等. DNA计算与DNA纳米技术[J]. 电子与信息学报, 2020, 42(6): 1313–1325. doi: 10.11999/JEIT190826. WANG Junke, YIN Jue, NIU Renjie, et al. DNA computing and DNA nanotechnology[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1313–1325. doi: 10.11999/JEIT190826. |
| [6] | 许进, 强小利, 张凯, 等. 基于探针图的并行型图顶点着色DNA计算模型(英文)[J]. 工程, 2018, 4(1): 61–77. doi: 10.1016/j.eng.2018.02.011 XU Jin, QIANG Xiaoli, ZHANG Kai, et al. A DNA computing model for the graph vertex coloring problem based on a probe graph[J]. Engineering, 2018, 4(1): 61–77. doi: 10.1016/j.eng.2018.02.011 |
| [7] | 蓝雯飞, 邢志宝, 黄俊, 等. DNA自组装计算模型求解二部图完美匹配问题[J]. 计算机研究与发展, 2016, 53(11): 2583–2593. doi: 10.7544/issn1000-1239.2016.20150312 LAN Wenfei, XING Zhibao, HUANG Jun, et al. The DNA self-assembly computing model for solving perfect matching problem of bipartite graph[J]. Journal of Computer Research and Development, 2016, 53(11): 2583–2593. doi: 10.7544/issn1000-1239.2016.20150312 |
| [8] | 朱维军, 周清雷, 张钦宪. 基于DNA计算的线性时序逻辑模型检测方法[J]. 计算机学报, 2016, 39(12): 2578–2597. doi: 10.11897/SP.J.1016.2016.02578 ZHU Weijun, ZHOU Qinglei, and ZHANG Qinxian. A LTL model checking approach based on DNA computing[J]. Chinese Journal of Computers, 2016, 39(12): 2578–2597. doi: 10.11897/SP.J.1016.2016.02578 |
| [9] | 夏宏, 张实君. 基于分子计算的逻辑模型构建[J]. 科技通报, 2016, 32(5): 11–15. doi: 10.3969/j.issn.1001-7119.2016.05.003 XIA Hong and ZHANG Shijun. Constructing the logical model based on molecular computing[J]. Bulletin of Science and Technology, 2016, 32(5): 11–15. doi: 10.3969/j.issn.1001-7119.2016.05.003 |
| [10] | 周旭, 周炎涛, 欧阳艾嘉, 等. 一种最大团问题的tile自组装高效模型[J]. 计算机研究与发展, 2014, 51(6): 1253–1262. doi: 10.7544/issn1000-1239.2014.20120904 ZHOU Xu, ZHOU Yantao, OUYANG Aijia, et al. An efficient tile assembly model for maximum clique problem[J]. Journal of Computer Research and Development, 2014, 51(6): 1253–1262. doi: 10.7544/issn1000-1239.2014.20120904 |
| [11] | 周旭, 周炎涛, 李肯立, 等. 基于tile自组装模型的最大匹配问题算法研究[J]. 电子学报, 2015, 43(2): 262–268. doi: 10.3969/j.issn.0372-2112.2015.02.009 ZHOU Xu, ZHOU Yantao, LI Kenli, et al. Efficient maximum matching problem algorithms in the tile assembly model[J]. Acta Electronica Sinica, 2015, 43(2): 262–268. doi: 10.3969/j.issn.0372-2112.2015.02.009 |
| [12] | ORGANICK L, ANG S D, CHEN Y J, et al. Random access in large-scale DNA data storage[J]. Nature Biotechnology, 2018, 36(3): 242–248. doi: 10.1038/nbt.4079 |
| [13] | RUTTEN M G T A, VAANDRAGER F W, ELEMANS J A A W, et al. Encoding information into polymers[J]. Nature Reviews Chemistry, 2018, 2(11): 365–381. doi: 10.1038/s41570-018-0051-5 |
| [14] | DNA to the rescue for data storage[J]. Chemical & Engineering News, 2015, 93(35): 40-41. |
| [15] | 陈为刚, 黄刚, 李炳志, 等. 音视频文件的DNA信息存储[J]. 中国科学: 生命科学, 2020, 50(1): 81–85. doi: 10.1360/SSV-2019-0211 CHEN Weigang, HUANG Gang, LI Bingzhi, et al. DNA information storage for audio and video files[J]. Scientia Sinica Vitae, 2020, 50(1): 81–85. doi: 10.1360/SSV-2019-0211 |
| [16] | GREENGARD S. Cracking the code on DNA storage[J]. Communications of the ACM, 2017, 60(7): 16–18. doi: 10.1145/3088493 |
| [17] | GRASS R N, HECKEL R, PUDDU M, et al. Robust chemical preservation of digital information on DNA in silica with error-correcting codes[J]. Angewandte Chemie International Edition, 2015, 54(8): 2552–2555. doi: 10.1002/anie.201411378 |
| [18] | LUNT B M. How long is long-term data storage?[C]. Archiving Conference, Society for Imaging Science and Technology, 2011: 29–33. |
| [19] | SHRIVASTAVA S and BADLANI R. Data storage in DNA[J]. International Journal of Electrical Energy, 2014, 2(2): 119–124. |
| [20] | GREENBERG A, HAMILTON J, MALTZ D A, et al. The cost of a cloud: Research problems in data center networks[J]. ACM SIGCOMM Computer Communication Review, 2008, 39(1): 68–73. doi: 10.1145/1496091.1496103 |
| [21] | SHETH R U and WANG H H. DNA-based memory devices for recording cellular events[J]. Nature Reviews Genetics, 2018, 19(11): 718–732. doi: 10.1038/s41576-018-0052-8 |
| [22] | WIENER N. Interview: Machines smarter than men[J]. US News World Report, 1964, 56: 84–86. |
| [23] | NEIMAN M S. On the molecular memory systems and the directed mutations[J]. Radiotekhnika, 1965, 6: 1–8. |
| [24] | DAVIS J. Microvenus[J]. Art Journal, 1996, 55(1): 70–74. doi: 10.1080/00043249.1996.10791743 |
| [25] | CLELLAND C T, RISCA V, and BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533–534. doi: 10.1038/21092 |
| [26] | BANCROFT C, BOWLER T, BLOOM B, et al. Long-term storage of information in DNA[J]. Science, 2001, 293(5536): 1763–1765. |
| [27] | AILENBERG M and ROTSTEIN O D. An improved huffman coding method for archiving text, images, and music characters in DNA[J]. BioTechniques, 2009, 47(3): 747–754. doi: 10.2144/000113218 |
| [28] | WONG P C, WONG K K, and FOOTE H. Organic data memory using the DNA approach[J]. Communications of the ACM, 2003, 46(1): 95–98. doi: 10.1145/602421.602426 |
| [29] | ARITA M and OHASHI Y. Secret signatures inside genomic DNA[J]. Biotechnology Progress, 2004, 20(5): 1605–1607. doi: 10.1021/bp049917i |
| [30] | YACHIE N, SEKIYAMA K, SUGAHARA J, et al. Alignment-based approach for durable data storage into living organisms[J]. Biotechnology Progress, 2007, 23(2): 501–505. doi: 10.1021/bp060261y |
| [31] | CHURCH G M, GAO Yuan, and KOSURI S. Next-generation digital information storage in DNA[J]. Science, 2012, 337(6102): 1628. doi: 10.1126/science.1226355 |
| [32] | GOLDMAN N, BERTONE P, CHEN Siyuan, et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA[J]. Nature, 2013, 494(7435): 77–80. doi: 10.1038/nature11875 |
| [33] | GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52–56. doi: 10.1126/science.1190719 |
| [34] | HECKEL R, SHOMORONY I, RAMCHANDRAN K, et al. Fundamental limits of DNA storage systems[C]. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 3130–3134. |
| [35] | KOSURI S and CHURCH G M. Large-scale de novo DNA synthesis: Technologies and applications[J]. Nature Methods, 2014, 11(5): 499–507. doi: 10.1038/nmeth.2918 |
| [36] | BORNHOLT J, LOPEZ R, CARMEAN D M, et al. A DNA-based archival storage system[J]. ACM SIGPLAN Notices, 2016, 50(4): 637–649. |
| [37] | YAZDI S M H T, YUAN Yongbo, MA Jian, et al. A rewritable, random-access DNA-based storage system[J]. Scientific Reports, 2015, 5: 14138. doi: 10.1038/srep14138 |
| [38] | ERLICH Y and ZIELINSKI D. DNA fountain enables a robust and efficient storage architecture[J]. Science, 2017, 355(6328): 950–954. doi: 10.1126/science.aaj2038 |
| [39] | 谭丽, 孙季丰, 郭礼华. 基于memetic算法的DNA序列数据压缩方法[J]. 电子与信息学报, 2014, 36(1): 121–127. TAN Li, SUN Jifeng, and GUO Lihua. DNA sequence data compression method based on memetic algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(1): 121–127. |
| [40] | SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x |
| [41] | HECKEL R, MIKUTIS G, and GRASS R N. A characterization of the DNA data storage channel[J]. Scientific Reports, 2019, 9(1): 9663. doi: 10.1038/s41598-019-45832-6 |
| [42] | REED I S and SOLOMON G. Polynomial codes over certain finite fields[J]. Journal of the Society for Industrial and Applied Mathematics, 1960, 8(2): 300–304. doi: 10.1137/0108018 |
| [43] | ANAVY L, VAKNIN I, ATAR O, et al. Improved DNA based storage capacity and fidelity using composite DNA letters[J]. bioRxiv, 2018. doi: 10.1101/433524 |
| [44] | CHOI Y, RYU T, LEE A C, et al. Addition of degenerate bases to DNA-based data storage for increased information capacity[J]. bioRxiv, 2018. doi: 10.1101/367052 |
| [45] | YAZDI S M H T, GABRYS R, and MILENKOVIC O. Portable and error-free DNA-based data storage[J]. Scientific Reports, 2017, 7: 5011. doi: 10.1038/s41598-017-05188-1 |
| [46] | BLAWAT M, GAEDKE K, HÜTTER I, et al. Forward error correction for DNA data storage[J]. Procedia Computer Science, 2016, 80: 1011–1022. doi: 10.1016/j.procs.2016.05.398 |
| [47] | LEE H H, KALHOR R, GOELA N, et al. Enzymatic DNA synthesis for digital information storage[J]. bioRxiv, 2018. doi: 10.1101/348987 |
| [48] | BAUM E. Building an associative memory vastly larger than the brain[J]. Science, 1995, 268(5210): 583–585. doi: 10.1126/science.7725109 |
| [49] | CARUTHERS M H. The chemical synthesis of DNA/RNA: Our gift to science[J]. Journal of Biological Chemistry, 2013, 288(2): 1420–1427. doi: 10.1074/jbc.X112.442855 |
| [50] | GOODWIN S, MCPHERSON J D, and MCCOMBIE W R. Coming of age: Ten years of next-generation sequencing technologies[J]. Nature Reviews Genetics, 2016, 17(6): 333–351. doi: 10.1038/nrg.2016.49 |
| [51] | SHENDURE J, BALASUBRAMANIAN S, CHURCH G M, et al. DNA sequencing at 40: Past, present and future[J]. Nature, 2017, 550(7676): 345–353. doi: 10.1038/nature24286 |
| [52] | DEAMER D, AKESON M, and BRANTON D. Three decades of nanopore sequencing[J]. Nature Biotechnology, 2016, 34(5): 518–524. doi: 10.1038/nbt.3423 |
| [53] | FONTANA JR R E and DECAD G M. Moore’s law realities for recording systems and memory storage components: HDD, tape, NAND, and optical[J]. AIP Advances, 2018, 8(5): 056506. doi: 10.1063/1.5007621 |
| [54] | BONNET J, COLOTTE M, COUDY D, et al. Chain and conformation stability of solid-state DNA: Implications for room temperature storage[J]. Nucleic Acids Research, 2010, 38(5): 1531–1546. doi: 10.1093/nar/gkp1060 |
| [55] | PRAKADAN S M, SHALEK A K, and WEITZ D A. Scaling by shrinking: Empowering single-cell 'omics' with microfluidic devices[J]. Nature Reviews Genetics, 2017, 18(6): 345–361. doi: 10.1038/nrg.2017.15 |
| [56] | NEWMAN S, STEPHENSON A P, WILLSEY M, et al. High density DNA data storage library via dehydration with digital microfluidic retrieval[J]. Nature Communications, 2019, 10(1): 1706. doi: 10.1038/s41467-019-09517-y |