运动目标环境下的调频步进信号目标抽取算法

苏宏艳 龙 腾 何佩琨 侯孝民 (北京理工大学电子工程系 北京 100081)

 摘 要 为了减少采样损失,调频步进信号的采样率通常高于 chirp 子脉冲的带宽。在这种过采样冗余情况下, 需要对 IFFT 合成高分辨结果进行目标抽取去冗余方能得到高分辨一维距离像。然而当目标运动时,目标抽取的 结果会产生目标丢失或伪峰等现象。该文提出了一种基于幅度最强像偏移量的动目标抽取算法,该方法利用幅度 最强像的偏移量修正各采样点的目标抽取范围,从而解决了速度估计误差引起的速度-距离耦合对目标抽取算法的 影响。计算机实验结果验证了理论分析的正确性。
关键词 目标抽取算法,距离高分辨,调频步进,运动目标

中图分类号: TN957.51 文献标识码: A

文章编号: 1009-5896(2006)05-0915-04

Target's Redundancy Removed Algorithm for Modulated Frequency Stepped Pulse Radar Signal Echoed by Moving Target

Su Hong-yan Long Teng He Pei-kun Hou Xiao-min

(Dept. of Electronic Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract To reduce the loss of sampling, higher sampling frequency than bandwidth of chirp must be adopted for Modulated Frequency Stepped Pulse(MFSP) radar signal, which will bring on over-sampling result of pulse compression for chirp. So the pick-up algorithm for the MFSP radar signal must be adopted to eliminate target's redundancy in order to obtain fine HRRP(High-Resolution Range Profile). However, because of inaccuracy of the velocity compensation method, the velocity error of the moving target will produce velocity-range coupling error, even bring the influence of losing target or producing spurious peaks on the HRRP. This paper proposes a target's redundancy removed algorithm based on the offset of the most powerful scatterer, which can solve the velocity-range coupling problem effectively by modifying the pick-up scopes of all sampled points. Finally, the processing results of both simulated data and real radar data validate the correctness of theoretical analysis.

Key words Target pick-up algorithm, High-resolution range, MFSP, Moving target

1 引言

在高分辨雷达中,调频步进信号把步进频率中的常载频 子脉冲换成了chirp,结合了步进频与chirp信号的优点,在获 得较大作用距离的同时,实现了距离高分辨,近年来受到广 泛的关注^[1]。

与步进频信号一样,调频步进信号也存在距离失配和过 采样冗余^[2],针对这两个问题,文献[2]提出了静止目标抽取 算法,从而可以得到完备的目标一维距离像。然而,当目标 运动时,由于用于补偿的速度估计值不精确,会产生残余的 速度估计误差,该项引起的线性相移将导致速度-距离耦合, 影响目标抽取算法形成高分辨一维距离像^[3]。

针对速度估计误差,文献[4]综述并分析了当前对步进频

信号多普勒效应补偿的各种方法,但这些方法由于测速精度 不够或计算量较大等因素的影响,离实际工程应用尚有一段 距离。文献[5]从另一角度出发,提出了正负调频信号,其模 糊函数为图钉型,并利用最小脉组误差方法通过搜索得到补 偿最优的速度值。由于该方法利用积累前的信息测速,当信 噪比较低时,将影响速度估计精度;另外,对多组速度值进 行补偿及搜索补偿最优的速度值也会增加信号处理机的计 算量。文献[3]则提出了幅度内插算法克服速度估计误差引起 的距离耦合时移效应,但该方法不能得到高分辨一维距离 像,而一维距离像对于后续的跟踪和识别具有重要的价值。 因此在速度估计值存在较大误差的前提下,如何有效解决速 度估计误差引起的速度-距离耦合影响,形成高分辨一维距 离像是运动目标环境下调频步进信号面临的主要问题。

速度估计误差项是粗速度补偿后的残留项,粗速度补偿 已基本解决了幅度衰减和发散问题。因此,速度估计误差项

2004-09-10 收到, 2005-01-17 改回

对于目标抽取算法的影响主要在于像偏离了静止情况下的 目标抽取范围,如图 1(b)所示。两种途径可以解决这种偏离: (1)进行精确的速度补偿,修正像的位置,然后再利用静止目 标抽取算法得到高分辨一维距离像,如图 1(c)所示;(2)直接 修正抽取范围,得到高分辨一维距离像,如图 1(d)所示。目 标运动情况下,传统意义上的目标抽取算法主要采用第一种 途径(文献[4,5]所述均属此类方法),这种方法需要速度精确 已知,另外,补偿时需大量的复数乘法运算,给信号处理机 带来较大的计算负担。本文提出采用第二种途径解决动目标 抽取问题。

图 1 距离像与抽取范围示意图

(a)静止目标(b)动目标像偏移(c)修正像(d)修正抽取范围

本文首先简述了调频步进信号单个采样点对应的有效 范围和主像范围,然后分析了不同系统参数情况下目标运动 对于静止目标抽取算法产生的影响,最后提出了基于幅度最 强像偏移量的动目标抽取算法,该方法的主要思想是:在合 成高分辨率一维距离像后,信噪比较高的情况下搜索幅度最 强的像,然后基于该像的偏移量修正各采样点的抽取范围。 对仿真数据和实测数据的处理结果证明,该算法可以较好地 解决速度估计误差引起的速度-距离耦合问题,得到完备的 高分辨一维距离像。

2 采样点的成像范围

2.1 调频步进信号关键参数

调频步进信号的子脉冲是 chirp 信号,其处理过程分 2 步: (1)chirp 子脉冲脉压; (2)步进频合成高分辨。下面列出 调频步进信号的关键参数:

(a)chirp子脉冲带宽B,脉压后主瓣覆盖范围为 $\tau = 2/B$, 对应距离宽度为 $r_{\tau} = c\tau/2$,加海明窗脉压,脉压后脉宽为 1.47 r_{τ} ^[6];

(b)采样间隔 T_s, 对应于采样距离分辨率 r_s = cT_s/2;
(c)频率步进阶梯 Δf, 对应于不模糊距离 r_l = c/(2Δf);
(d)频率步进数 N, 对应于高分辨合成后最小距离分辨率
Δr = c/(2NΔf)。

2.2 单个采样点的成像范围

对于单个采样点而言,该点可采到的距离信息有一定范围,当目标的距离落在此范围之外时,采样点采不到目标的 chirp 脉压包络,这个范围称为采样点的有效范围,如图 2 所示,第n个采样点的有效范围为: $nr_s - r_t/2 \Box nr_s + r_t/2$ 。

图 2 单个采样点的有效范围示意图

另外,为了减少采样损失,在 $r_r > r_s$ 的过采样冗余情况 下,同一目标的脉压包络可被相邻多个采样点采到, chirp 脉压后主瓣为高斯形,多个采样点采到的幅度不同,合成高 分辨像的幅度也不同,定义采样点的主像范围为:当目标落 在此范围内时,该采样点像的幅度大于相邻其它采样点像的 幅度。如图 3 所示,第 n 个采样点的主像范围为: $nr_s - r_s/2 \sim nr_s + r_s/2$ 。

综上所述,单个采样点n存在两种成像范围:有效范围 和主像范围。根据这两种成像范围,可分别利用叠加法和舍 弃法对合成高分辨结果进行目标抽取。

3 目标运动对于静目标抽取算法产生的影响

为减小采样损失,通常系统参数取 $r_r > 3r_s$ ^[2]。舍弃法抽取各采样点的主像范围,系统参数设置满足宽约束条件: $r_r + r_s \leq 2r_I$,即可保证主像范围无混叠^[1],目标静止时,舍 弃法可得到幅度最强的像。叠加法抽取各采样点的有效范 围,若系统参数满足紧约束条件: $r_r < r_I$,将各采样点的有 效范围抽取后对应距离单元求模累加,目标静止时,可得到 正确的一维距离像。

当目标运动时,速度估计误差引起的速度-距离耦合使 目标的像偏离了抽取范围,此时,除了满足宽、窄约束条件, 系统参数的选取及偏移量的大小均会影响静目标抽取算法 抽取的结果。下面分别针对舍弃法和叠加法分析系统参数不 同时不同的偏移距离对静目标抽取算法产生的影响。

设速度-距离耦合引起的偏移距离为L^[3],则

$$L_{\text{mod}} = \text{mod}(L, r_I) = \text{mod}\left(\frac{f_0 \Delta v T_r}{\Delta f}, r_I\right)$$
(1)

其中 mod()为取余运算, f_0 为载波频率, Δv 为速度估计误差, T_r 为脉冲重复周期,其它参数同第 2.1 节。图 4 中为相 邻 5 个采样点的合成高分辨结果,矩形框为有效范围(长度 为 r_r),斜线区范围为主像范围(长度为 r_s),阴影区为当 $r_r \geq r_I$ 时产生的模糊区(长度为 $r_r - r_I$),空白线段为当 $r_I > r_r$

时的无效区(长度为 $r_t - r_r$)。假设0为静止情况下像的位置, 落在第3个采样点的主像范围内,1,2分别为不同的速度 估计误差引起偏移后像的位置。其中舍弃法仅抽取图4中的 斜线区(即主像范围长度为 r_s),叠加法抽取图5中的整个矩 形框(即有效范围长度为 r_r)。

图 5 叠加法偏移距离影响示意图 3.1 对舍弃法的影响

(1)当系统参数为 $r_l > r_z > 3r_s$ 时,必然满足紧约束条件, 采样点 2, 3, 4 均可采到脉压包络。若 $|L_{mod}| \le r_s$,像偏移 后仍在该采样点的主像范围内或落入相邻采样点(采样点 2, 4)的主像范围,舍弃法能抽到目标的像(如图 4(a)中像 1 所 示)。若 $\frac{r_r - r_s}{2} < |L_{mod}| \le r_l - r_z + \frac{r_z - r_s}{2}$,像偏移后落入无效 区,任何采样点均抽取不到像,目标丢失(如图 4(a)中像 2 所示)。

(2)当系统参数为 $r_r \ge r_r > 3r_s$ 时,为保证 r_s 的清晰区,需满 足宽约束条件。若 $|L_{mod}| \le r_s$,同(1)中所述,可得到正确的 一维距离像。若 $\frac{r_I - r_s}{2} < |L_{mod}| \le r_r - r_I + \frac{r_I - r_s}{2}$,像偏移后落 入两个采样点的公共抽取部分,产生伪峰(如图 4(b)中像 2 所示)。

3.2 对叠加法的影响

(1)当系统参数为 $r_r < r_l \le 2r_r$ 时,满足紧约束条件,存在 长度为 $r_l - r_r$ 的无效区。若 $|L_{mod}| < r_l - r_r$,仅可能发生幅度 损失(如图 5(a)中像 1 所示,采样点 1 没有抽到目标)。若 $r_l - r_r < |L_{mod}| \le 2r_r - r_l$,如图 5(a)中像 2,2'所示,采样点 1, 3,4,5都抽到了目标,但采样点 1 与采样点 3,4,5 去折 叠后的距离不同,叠加后存在两个峰值,产生伪峰。

(2)当系统参数为 $r_{l} > 2r_{\tau}$ 时,若 $|L| \le r_{\tau}$,如图 5(b)中像 1 所示,采样点 1 没有抽到目标,幅度损失;若 $|L| > r_{\tau}$,如 图 5(b)中像 2 所示,没有采样点抽到该目标,目标丢失。

4 基于幅度最强像偏移量的动目标抽取算法

对于单个运动目标,当各散射点的径向速度相同时,各 散射点像的细分辨单元位置发生了同样的偏移。因此,若能 通过检测找到幅度最强的像,计算出由目标运动引起的偏移 细分辨距离单元数 *L_n*,并将各采样点的抽取范围同时修正 *L_n*,即可得到运动目标环境下的一维高分辨距离像,这就 是基于幅度最强像偏移量的动目标抽取算法。

对于该算法,关键是偏移细分辨距离单元数 L_n 的计算。 假设已检测到幅度最强的像在合成高分辨二维结果矩阵中 的位置为 (m,nT_s) ,即该像落于第n个采样点的第m个细分 辨单元处。采样点n的主像范围为

$$\operatorname{ceil}\left(\operatorname{mod}\left(nr_{s}\frac{r_{s}}{2},r_{l}\right)/\Delta r\right)\operatorname{-floor}\left(\operatorname{mod}\left(nr_{s}+\frac{r_{s}}{2},r_{l}\right)/\Delta r\right) \quad (2)$$

其中 ceil()为向上取整运算, floor()为向下取整运算。

另外,假设采样距离分辨单元内有 N_s 个细分辨距离单元,即 $r_s = (N_s - 1)\Delta r$ 。在目标静止情况下,幅度最强的像必然是此主像范围内 N_s 个细分辨单元中的某一个。

综上所述,基于幅度最强像偏移量的动目标抽取算法可 总结如下:

步骤 1 在 IFFT 合成高分辨二维结果矩阵中检测幅度 最强的像,记录其所在的采样单元 *n* 及细分辨单元 *m*。

步骤 2 据步骤 1 的结果计算偏移距离高分辨单元数 L_n:

$$L_n = m - \text{round}(\text{mod}(nr_s, r_l) / \Delta r)$$
(3)
其中 round()为四舍五入取整运算。

步骤3 将静止目标抽取算法各采样点的抽取范围修正

L_n,得到动目标环境下的高分辨一维距离像。

步骤 2 在无法确认偏移前像的位置为主像范围内哪一 个细分辨单元的前提下,为了减小误差,假定偏移前像的位 置为主像的中间位置,该假定产生的最大误差为 round(r_s/2)。由第3节中的分析可知,在以上误差范围内, 步骤2中的假定对抽取结果影响较小,由于以幅度最强的像 为基准,必然能抽到幅度最强的散射点的像,其它散射点仅 有较小的幅度损失,不影响高分辨一维距离像。另外,所有 采样点存在同样的假定误差,因此,该假定产生的影响是目 标的绝对距离可能偏差 round(r_s/2),而各散射点间的相对 距离不存在误差,不影响后续的检测和跟踪。

5 信号处理仿真结果

5.1 对计算机仿真数据的抽取结果

设 $\Delta f = 6$ MHz , $r_I = 25$ m , N = 32 , $\Delta r = 0.78$ m , $f_0 = 35.2$ GHz , $T_r = 1/48$ ms , chirp 信号脉压前脉冲宽度 $\tau = 1.5$ μ s , 采样频率 $f_s = 32$ MHz 。设置 3 个点目标,其距 离分别为 $r_1 = 128.9$ 1m , $r_2 = 132.03$ m , $r_3 = 136.72$ m 。当 chirp 信号带宽 B = 28MHz 时,加海明窗脉冲压缩后脉冲宽度为 $r_r = 15.75$ m, $r_r < r_l$ 。设3个散射点的径向速度相同,均为 $\Delta v = 59.66$ m/s,则3个散射点的像偏移了 L_n 个高分辨单元, 其中 $L_n = \frac{f_0}{\Delta f} T_r \Delta v / \Delta r = 14$ 。合成高分辨结果如图 6(a)中的等 高线图所示。图 6(b)为将各采样点的合成高分辨像顺序拼接 的结果。

我们利用舍弃法和叠加法对动目标的合成高分辨结果 进行了抽取,图 7(a)为静止目标抽取算法的抽取结果,由于 $L = L_n \times \Delta r > r_r/2$,舍弃法抽取的结果目标丢失,叠加法抽 取的结果产生了伪峰,与第3节中的分析一致。基于幅度最 强像偏移量的目标抽取算法抽取后的结果如图 7(b)所示,与 图 6(b)比较可知,舍弃法中3个散射点均抽到了幅度最强的 像。叠加法将冗余像的结果累加,可有效提高一维距离像的 信噪比。

(b)基于幅度最强像偏移量的 抽取算法抽取结果

5.2 对实测雷达数据的抽取结果

为了进一步验证理论分析的正确,本文对机场运动目标 的一帧实测雷达数据做了处理,将所有采样点的合成高分辨 结果顺序拼接,如图8(a)所示。图8(b)给出了图8(a)中1280-1400 高分辨单元范围内相邻4个采样点的IFFT结果,由图可知, 幅度高于400的强散射点有3个。图8(c)为用基于幅度最强 像偏移量的动目标抽取算法抽取后的结果,与图8(a),8(b) 比较可知,正确抽到了3个强散射点,形成了高分辨一维距 离像。

6 结束语

速度补偿后残余的速度估计误差将引起速度-距离耦 合,导致动目标情况下无法利用目标抽取算法形成高分辨一 维距离像。本文简述了调频步进信号单个采样点对应的有效 范围和主像范围,分析了目标运动对于静止目标抽取算法可 能产生的影响,并给出了基于幅度最强像偏移量的动目标抽 取算法。相对于传统意义上的动目标抽取算法,本文提出方 法的区别在于:(1)精确速度未知;(2)无需做复数乘法运算, 仅通过修正抽取范围即可得到高分辨一维距离像。对仿真数 据和实测数据的处理结果证明,在目标运动情况下,该算法 可形成完备的高分辨一维距离像,进而为后续的高分辨跟踪 和识别奠定了基础。

参考文献

- [1] 龙腾,毛二可,何佩琨. 调频步进信号分析与处理[J]. 电子学 报, 1998, 12(12): 84-88.
- [2] 李眈,龙腾. 步进频率雷达目标去冗余算法[J]. 电子学报, 2000, 28(6): 60-63.
- [3] Lei Wen, Long Teng, Han Yueqiu. Moving targets imaging for stepped frequency radar[C]. Proceedings of ICSP 2000, Beijing, 2000: 1851 – 1855.
- [4] 毛二可,龙腾,韩月秋. 频率步进雷达数字信号处理[J]. 航空学报,2001,22(6):16-25.
- [5] 刘峥,张守宏. 跳频脉冲雷达目标的运动速度参数估计[J]. 信号处理,2000,16(6):97-100.
- [6] 林茂庸, 柯有安. 雷达信号理论[M]. 北京: 国防工业出版社, 1984: 143.
- 苏宏艳: 女, 1974年生, 博士生, 研究方向为雷达信号处理.
- 龙 腾: 男,1968年生,教授,博士生导师,主要研究方向为雷达系统、数字信号处理、数据通信.
- 何佩琨: 男,1940年生,教授,博士生导师,主要研究方向为数 字信号处理、统计信号处理、雷达系统.
- 侯孝民: 男, 1968年生, 博士生, 研究方向为雷达信号处理.