多通道 ARMA 信号信息融合 Wiener 滤波器

邓自立 高 媛

(黑龙江大学自动化系 哈尔滨 150080)

摘 要:应用 Kalman 滤波方法,基于白噪声估计理论,在线性最小方差最优信息融合准则下,提出了多通道 ARMA 信号的两传感器信息融合稳态最优 Wiener 滤波器、平滑器和预报器;给出了最优加权阵和最小融合误差方差阵。与单传感器情形相比,可提高滤波精度。一个雷达跟踪系统的仿真例子说明了其有效性。

关键词:多通道 ARMA 信号,两传感器,最优信息融合,Wiener 滤波器,Kalman 滤波

中图分类号: TP391

文献标识码: A

文章编号: 1009-5896(2005)09-1416-04

Multichannel ARMA Signal Information Fusion Wiener Filter

Deng Zi-li Gao Yuan

(Department of Automation, Heilongjiang University, Harbin 150080, China)

Abstract Using the Kalman filtering method, based on white noise estimation theory, under the linear minimum variance information fusion criterion, two-sensor information fusion steady-state optimal Wiener filter, smoother and predictor are presented for the multichannel Auto-Regressive Moving Average(ARMA) signals, where the optimal weighting matrices and minimum fused error variance matrix are given. Compared with the single sensor case, the accuracy of the filter is improved. A simulation example of a radar tracking system shows its effectiveness.

Key words Multichannel AMAR signal, Two-sensor, Optimal information fusion, Wiener filter, Kalman filtering

1 引言

随着电子技术和计算机应用技术的发展,各种面向复杂应用背景的多传感器系统大量涌现。从 20 世纪 70 年代起,一个新兴的边缘学科——多传感器信息融合迅速发展起来,并在 C³I(指挥、控制、通信和情报)系统中和各种武器平台上以及许多民事领域得到了广泛的应用[1]。文献[2]用现代时间序列分析方法^[3,4]提出了带白色观测噪声的单通道 ARMA 信号的两传感器信息融合滤波器和平滑器。本文则基于 Kalman滤波方法提出了通用的和统一的多通道 ARMA 信号两传感器最优信息融合滤波器、平滑器和预报器。

2 问题阐述

考虑带白色观测噪声的两传感器多通道 ARMA 信号 s(t),

$$A(q^{-1})s(t) = C(q^{-1})w(t)$$
 (1)

$$y_i(t) = s(t) + v_i(t), i = 1, 2$$
 (2)

其中 $y_i(t) \in R^m$ 为第 i 个传感器的输出,待估 ARMA 信号 s(t) $\in R^m$,白色观测噪声 $v_i(t) \in R^m$, q^{-1} 为单位滞后算子、w(t)

 $\in R'$ 和 $v_i(t)$ 是零均值、协方差阵分别为 Q_w 和 Q_w 的独立白噪声

$$E\left\{\begin{bmatrix} \mathbf{w}(t) \\ \mathbf{v}_{i}(t) \end{bmatrix} \begin{bmatrix} \mathbf{w}^{\mathsf{T}}(t) & \mathbf{v}_{i}^{\mathsf{T}}(t) \end{bmatrix}\right\} = \begin{bmatrix} \mathbf{Q}_{w} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{w} \end{bmatrix} \delta_{ij}$$
(3)

其中 E 为均值运算,T 为转置运算, $\delta_{tt} = 1, \delta_{tj} = 0 (t \neq j)$. $A(q^{-1})$ 和 $C(q^{-1})$ 为多项式矩阵。

$$A(q^{-1}) = I_m + A_1 q^{-1} + \dots + A_{n_a} q^{-n_a}$$

$$C(q^{-1}) = C_1 q^{-1} + \dots + C_n q^{-n_c}$$
(4)

其中 I_m 为 $m \times m$ 单位矩阵,且设 $n_a \ge n_c$, $(A(q^{-1}), C(q^{-1}))$ 左素 [4] 。问题是基于观测 $(y_i(t+N), y_i(t+N-1), \cdots)$ 求信号 s(t) 的局部最优 Wiener 滤波器 $\hat{s}_i(t|t+N)$, i=1, 2 ,并求它们的最优融合 Wiener 滤波器 $\hat{s}_0(t|t+N)$,对 N=0 , N>0 , N<0 分别称其为滤波器,平滑器和预报器。

3 局部最优 Wiener 滤波器

第 i 个传感器子系统有状态空间模型:

$$x(t+1) = \Phi x(t) + \Gamma w(t)$$
 (5)

$$y_i(t) = Hx(t) + v_i(t), i = 1,2$$
 (6)

其中 Hx(t) = s(t), $H = [I_m \ 0 \ \cdots \ 0]$; $C_i = 0$, $i > n_c$; 且

$$\boldsymbol{\Phi} = \begin{bmatrix} -A_1 & I_{m(n_a-1)} \\ \vdots & I_{m(n_a-1)} \\ -A_{n_a} & 0 & \cdots & 0 \end{bmatrix}, \boldsymbol{\Gamma} = \begin{bmatrix} \boldsymbol{C}_1 \\ \vdots \\ \boldsymbol{C}_{n_a} \end{bmatrix}$$
 (7)

定理 1 第 i 个传感器子系统式(5)和式(6)有渐近稳定的局部最优 Wiener 滤波器 $\hat{s}_i(t|t+N)$, (i=1,2) 为

$$\psi_i(q^{-1})\hat{s}_i(t \mid t+N) = K_{iN}(q^{-1})y_i(t+N), \quad i = 1, 2$$
 (8)

其中 N = 0,N > 0 或 N < 0 且定义

$$\mathbf{K}_{iN}(q^{-1}) = \mathbf{J}_{-N}^{(i)}(q^{-1}) - \mathbf{L}_{iN}^{\mathbf{v}}(q^{-1}) \mathbf{\Lambda}_{i}(q^{-1}) \tag{9}$$

$$\Psi_i(q^{-1}) = \det(\mathbf{I} - q^{-1}\boldsymbol{\Psi}_{ni}) \tag{10}$$

$$\mathbf{\Lambda}_{i}(q^{-1}) = \mathbf{\Psi}_{i}(q^{-1})\mathbf{I}_{m} - \mathbf{H}\operatorname{adj}(\mathbf{I} - q^{-1}\mathbf{\Psi}_{pi})\mathbf{K}_{pi}q^{-1}$$
(11)

其中 $\psi_i(q^{-1})$ 是稳定的多项式,且

$$\Psi_{pi} = \Phi - K_{pi}H, \qquad K_{pi} = \Phi K_{i}$$
 (12)

$$\boldsymbol{K}_{i} = \boldsymbol{\Sigma}_{i} \boldsymbol{H}^{T} \boldsymbol{Q}_{si}^{-1} , \quad \boldsymbol{Q}_{si} = \boldsymbol{H} \boldsymbol{\Sigma}_{i} \boldsymbol{H}^{T} + \boldsymbol{Q}_{v}$$
 (13)

其中 Σ, 是如下 Riccati 方程的解:

$$\Sigma_{i} = \boldsymbol{\Phi}[\Sigma_{i} - \Sigma_{i} \boldsymbol{H}^{T} (\boldsymbol{H} \Sigma_{i} \boldsymbol{H}^{T} + \boldsymbol{Q}_{vi})^{-1} \boldsymbol{H} \Sigma_{i}] \boldsymbol{\Phi}^{T} + \Gamma \boldsymbol{Q}_{w} \boldsymbol{\Gamma}^{T}$$
 (14)

它可由迭代法求解 $^{[2]}$ 。而 $J_N^{(i)}(q^{-1})$ 和 $L_N^{(i)}(q^{-1})$ 定义为

$$J_{N}^{(i)}(q^{-1}) = \begin{cases} H \Phi^{N-1} \operatorname{adj}(I - \Psi_{pi}q^{-1}) K_{pi}, & N > 0 \\ \Psi_{i}(q^{-1}) I_{m}q^{N}, & N \leq 0 \end{cases}$$
(15)

$$\mathbf{L}_{iN}^{\mathbf{v}}(q^{-1}) = \sum_{i=0}^{N} \mathbf{M}_{j}^{(i)} q^{j-N}, \quad N \ge 0$$
 (16)

$$L_{iN}^{\nu}(q^{-1}) = 0, \quad N < 0$$
 (17)

$$\boldsymbol{M}_{j}^{(i)} = -\boldsymbol{Q}_{vi} \boldsymbol{K}_{i}^{\mathsf{T}} \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Psi}_{pi}^{\mathsf{T}(j-1)} \boldsymbol{H}^{\mathsf{T}} \boldsymbol{Q}_{\varepsilon i}^{-1}, \quad j \ge 1$$
 (18)

$$\boldsymbol{M}_0^{(i)} = \boldsymbol{Q}_{\nu i} \boldsymbol{Q}_{\varepsilon i}^{-1} \tag{19}$$

证明 第 i 个子系统式(5), 式(6)有稳态 Kalman 预报器 [3].

$$\hat{\mathbf{x}}_{i}(t+1|t) = \mathbf{\Psi}_{pi}\hat{\mathbf{x}}_{i}(t|t-1) + \mathbf{K}_{pi}\mathbf{y}_{i}(t)$$
 (20)

$$y_i(t) = H\hat{x}_i(t \mid t - 1) + \varepsilon_i(t)$$
 (21)

其中 $\varepsilon_i(t)$ 是 $y_i(t)$ 的新息过程,它是零均值、方差为 $Q_{\varepsilon i}$ 的白噪声。 $\Psi_{\rho i}$, $K_{\rho i}$ 和 $Q_{\varepsilon i}$ 由式(12)~(14)决定,式(20)可写为

$$\hat{\mathbf{x}}_{i}(t \mid t-1) = (\mathbf{I} - q^{-1} \boldsymbol{\Psi}_{pi})^{-1} \boldsymbol{K}_{pi} q^{-1} \boldsymbol{y}_{i}(t)$$
 (22)

将其代入式(21)可引出 ARMA 新息模型:

$$\Lambda_i(q^{-1})y_i(t) = \psi_i(q^{-1})\varepsilon_i(t) \tag{23}$$

其中 $\Lambda_i(q^{-1})$ 和 $\psi_i(q^{-1})$ 由式(11)和式(10)定义。由式(2)和射影 (projection)性质^[3]有

$$\hat{\mathbf{s}}_{i}(t \mid t+N) = \hat{\mathbf{y}}_{i}(t \mid t+N) - \hat{\mathbf{v}}_{i}(t \mid t+N)$$
 (24)

由文献[3]有最优预报器 $\hat{y}_i(t|t+N)$ 和最优白噪声估计器 $\hat{v}_i(t|t+N)$ 为

$$\hat{\mathbf{y}}_{i}(t \mid t+N) = H\hat{\mathbf{x}}_{i}(t \mid t+N)$$

$$= H\boldsymbol{\Phi}^{-N-1}\hat{\mathbf{x}}_{i}(t+N+1 \mid t+N), \quad N \leq -1$$
(25)

$$\hat{y}_i(t | t + N) = y_i(t), \quad N \ge 0$$
 (26)

$$\hat{\mathbf{v}}_i(t \mid t+N) = \mathbf{L}_{iN}^{\mathbf{v}}(q^{-1})\boldsymbol{\varepsilon}_i(t+N) \tag{27}$$

其中 $\mathbf{L}'_{lN}(q^{-1})$ 由式(16)~(19)定义。将式(22)代入式(25),再将式(25)~(27)代入式(24),并利用式(23)和等式 $(\mathbf{I}-q^{-1}\mathbf{\Psi}_{pi})^{-1}$ = $\mathrm{adj}(\mathbf{I}-q^{-1}\mathbf{\Psi}_{pi})/\psi_i(q^{-1})$,整理后可得式(8)和式(9)。证毕

定理 2 第 i 个传感器子系统的估计误差 $\hat{s}_i(t|t+N)$ = $s(t) - \hat{s}_i(t|t+N)$ 的方差阵 $P_{si}(N) = E[\tilde{s}_i(t|t+N)\tilde{s}_i^T(t|t+N)]$ 为

$$\boldsymbol{P}_{si}(N) = \boldsymbol{Q}_{vi} - \sum_{i=0}^{N} \boldsymbol{M}_{j}^{(i)} \boldsymbol{Q}_{\varepsilon i} \boldsymbol{M}_{j}^{(i)\mathsf{T}}, \quad N \ge 0$$
 (28)

$$\mathbf{P}_{si}(N) = \mathbf{H} \mathbf{\Sigma}_{i}(N) \mathbf{H}^{\mathrm{T}}, \quad N < 0$$
 (29)

其中 $\Sigma_i(-1) = \Sigma_i$,

$$\Sigma_{i}(N) = \boldsymbol{\Phi}^{-N-1} \Sigma_{i}(\boldsymbol{\Phi}^{\mathrm{T}})^{-N-1}$$

$$+\sum_{j=2}^{-N} \boldsymbol{\Phi}^{-N-j} \boldsymbol{\Gamma} \boldsymbol{Q}_{w} \boldsymbol{\Gamma}^{\mathrm{T}} (\boldsymbol{\Phi}^{\mathrm{T}})^{-N-j}, \quad N < -1$$
 (30)

证明 当 N ≥ 0 时,由式(2)有

$$\hat{s}_{i}(t \mid t+N) = y_{i}(t) - \hat{v}_{i}(t \mid t+N)$$
 (31)

于是由式(2)有估计误差 $\tilde{s}_i(t|t+N) = s(t) - \hat{s}_i(t|t+N)$ 与 $\tilde{v}_i(t|t+N) = v_i(t) - \hat{v}_i(t|t+N)$ 有关系:

$$\tilde{\mathbf{s}}_i(t \mid t+N) = -\tilde{\mathbf{v}}_i(t \mid t+N) \tag{32}$$

这引出 $P_{si}(N) = \mathbb{E}[\tilde{v}_i(t|t+N)\tilde{v}_i^T(t|t+N)] = P_{vi}(N)$ 。由文献[3] 有

$$\boldsymbol{P}_{vi}(N) = \boldsymbol{Q}_{vi} - \sum_{i=0}^{N} \boldsymbol{M}_{j}^{(i)} \boldsymbol{Q}_{\varepsilon i} \boldsymbol{M}_{j}^{(i)\mathsf{T}}$$
 (33)

这引出式(28)。当 N < 0 时,显然 $\Sigma_i(-1) = \Sigma_i$ 为一步预报误差协方差阵,而 N < -1 时,由式(1)迭代有关系:

$$x(t) = \Phi^{-N-1}x(t+N+1) + \sum_{i=2}^{-N} \Phi^{-N-j} \Gamma w(t+N+j-1)$$
 (34)

由上式和射影性质有

$$\hat{x}_i(t|t+N) = \Phi^{-N-1}\hat{x}_i(t+N+1|t+N), N<-1$$
 (35)
上面两式引出估计误差 $\tilde{x}_i(t|t+N) = x(t) - \hat{x}_i(t|t+N)$ 的协方差阵 $\Sigma_i(N) = E[\tilde{x}_i(t|t+N)\tilde{x}_i^T(t|t+N)]$ 满足式(30)。由式(2)

和式(6)有

$$s(t) = Hx(t) \tag{36}$$

$$\hat{\mathbf{s}}_i(t \mid t+N) = H\hat{\mathbf{x}}_i(t \mid t+N) \tag{37}$$

这引出式(29)成立.

定理 3 系统式(1),式(2)有估计误差协方差阵 $P_{\text{sl2}}(N) = E[\tilde{s}_1(t|t+N)\tilde{s}_2^T(t|t+N)], 当 N \ge 0$ 时,

$$P_{s12}(N) = \sum_{r=0}^{N} \sum_{s=0}^{N} M_r^{(1)} e(r, s) M_s^{(2)T}$$
 (38)

其中 $e(r,s) = E[\varepsilon_1(t+r)\varepsilon_2^T(t+s)]$ 为

$$\boldsymbol{e}(r,s) = \boldsymbol{H} \boldsymbol{\Psi}_{p1}^{r} \boldsymbol{\Sigma}_{12} \boldsymbol{\Psi}_{p2}^{sT} \boldsymbol{H}^{T} + \sum_{j=1}^{\min(r,s)} \boldsymbol{H} \boldsymbol{\Psi}_{p1}^{r-j} \boldsymbol{\Gamma} \boldsymbol{Q}_{w} \boldsymbol{\Gamma}^{T} \boldsymbol{\Psi}_{p2}^{(s-j)T} \boldsymbol{H}^{T}$$

(39)

其中当 min(r,s)=0 时,应规定上式第二项为零。 当 N<0时,

$$\mathbf{P}_{s|2}(N) = \sum_{r=1}^{N} \sum_{s=1}^{N} \mathbf{F}_{-N-r}^{(1)} \mathbf{e}(r,s) \mathbf{F}_{-N-s}^{(2)T}$$
(40)

其中系数阵 F 由如下 Diophantine 方程给定^[3]:

$$\psi_i(q^{-1})I_m = F_{-N}^{(i)}(q^{-1})A_i(q^{-1}) + q^N G_N^{(i)}(q^{-1})$$
(41)

$$F_{-N}^{(i)}(q^{-1}) = I_m + F_1^{(i)}q^{-1} + \dots + F_{-N-1}^{(i)}q^{-N-1}, \quad F_0^{(i)} = I_m$$
 (42)
其中 $e(r,s)$ 由式(39)给出。

证明 当 N ≥ 0 时,由式(32)和白噪声估计器式(27)和式 (16)有^[3]

$$\tilde{\mathbf{s}}_{i}(t \mid t+N) = -\tilde{\mathbf{v}}_{i}(t \mid t+N) = -\left[\mathbf{v}_{i}(t) - \sum_{j=0}^{N} \mathbf{M}_{j}^{(i)} \boldsymbol{\varepsilon}_{i}(t+j)\right],$$

$$i = 1, 2 \tag{43}$$

$$P_{s12}(N) = E\left[v_1(t) - \sum_{r=0}^{N} M_r^{(1)} \varepsilon_1(t+r)\right] \left[v_2(t) - \sum_{s=0}^{N} M_s^{(2)} \varepsilon_2(t+s)\right]$$
(44)

注意关系[3]:

$$\varepsilon_i(t+k) = H\tilde{x}_i(t+k|t+k-1) + v_i(t+k) \tag{45}$$

$$\tilde{\mathbf{x}}_{i}(t+1|t) = \boldsymbol{\Psi}_{ni}\tilde{\mathbf{x}}_{i}(t|t-1) + \boldsymbol{\Gamma}\boldsymbol{w}(t) - \boldsymbol{K}_{ni}\boldsymbol{v}_{i}(t) \tag{46}$$

由式(46)迭代有关系;

$$\tilde{\mathbf{x}}_{i}(t+k|t+k-1) = \boldsymbol{\Psi}_{pi}^{k}\tilde{\mathbf{x}}_{i}(t|t-1) + \sum_{j=1}^{k} \boldsymbol{\Psi}_{pi}^{k-j} [\boldsymbol{\Gamma} w(t+j-1) - \boldsymbol{K}_{pi} \boldsymbol{v}_{i}(t+j-1)]$$
(47)

由此知 $v_2(t)$ 与 $\varepsilon_1(t+r)$ 不相关, $v_1(t)$ 与 $\varepsilon_2(t+r)$ 不相关, 应 用式(3)和式(44)可得式(38)。应用式(45)~(47)可得式(39)。

当
$$N < 0$$
 时,注意由式(2)有 $s(t) = y_i(t) - v_i(t)$, 因而
$$\hat{s}_i(t|t+N) = \hat{y}_i(t|t+N)$$
 (48)

于是有

$$E[\tilde{\mathbf{y}}_{1}(t \mid t+N)\tilde{\mathbf{y}}_{2}^{T}(t \mid t+N)]$$

$$= E[(\tilde{\mathbf{s}}_{1}(t \mid t+N) + \mathbf{v}_{1}(t))(\tilde{\mathbf{s}}_{2}(t \mid t+N) + \mathbf{v}_{2}(t))^{T}]$$

$$= E[\tilde{\mathbf{s}}_{1}(t \mid t+N)\tilde{\mathbf{s}}_{2}^{T}(t \mid t+N)] = \mathbf{P}_{\mathbf{s}|2}(N)$$
(49)

而注意系统式(5),(6)有 ARMA 模型式(23),这引出[3]

 $\tilde{\mathbf{s}}_{i}(t \mid t+N) = \tilde{\mathbf{y}}_{i}(t \mid t+N) - \mathbf{v}_{i}(t)$

$$\hat{\mathbf{y}}_{i}(t \mid t+N) = \mathbf{G}_{N}^{(i)}(q^{-1})\mathbf{\Psi}_{i}^{-1}(q^{-1})\mathbf{y}_{i}(t+N)$$
(50)

$$\tilde{y}_{i}(t \mid t+N) = F_{-N}^{(i)}(q^{-1})\varepsilon_{i}(t) = \sum_{r=1}^{N} F_{-N-r}\varepsilon_{i}(t+N+r)$$
 (51)

其中 $F_{-N}^{(i)}(q^{-1})$ 和 $G_N^{(i)}(q^{-1})$ 由式(41)和式(42)决定。这引出式 (40). 证毕

按矩阵加权线性最小方差最优融合 Wiener 滤波

定理 4 两传感器系统式(1),(2)有按矩阵加权线性最小

方差最优信息融合 Wiener 滤波器 $\hat{s}_0(t|t+N)$ 为

$$\hat{s}_0(t \mid t+N) = A_1(N)\hat{s}_1(t \mid t+N) + A_2(N)\hat{s}_2(t \mid t+N)$$
 (52)

其中N=0, N>0或N<0,且

$$A_{1}(N) = (\mathbf{P}_{s2}(N) - \mathbf{P}_{s12}^{T}(N))$$

$$\cdot (\mathbf{P}_{s1}(N) + \mathbf{P}_{s2}(N) - \mathbf{P}_{s12}(N) - \mathbf{P}_{s12}^{T}(N))^{-1}$$

$$A_{2}(N) = (\mathbf{P}_{s1}(N) - \mathbf{P}_{s12}(N))$$

$$\cdot (\mathbf{P}_{s1}(N) + \mathbf{P}_{s2}(N) - \mathbf{P}_{s12}(N) - \mathbf{P}_{s12}^{T}(N))^{-1}$$
(53)

且最小融合误差 $\tilde{s}_0(t|t+N) = s(t) - \hat{s}_0(t|t+N)$ 方差阵为

$$\mathbf{P}_{s0}(N) = \mathbf{P}_{s1}(N) - (\mathbf{P}_{s1}(N) - \mathbf{P}_{s2}(N))
\cdot (\mathbf{P}_{s1}(N) + \mathbf{P}_{s2}(N) - \mathbf{P}_{s12}(N) - \mathbf{P}_{s12}^{T}(N))^{-1}
\cdot (\mathbf{P}_{s1}(N) - \mathbf{P}_{s12}(N))^{T}$$
(54)

且有关系

$$\operatorname{tr} \mathbf{P}_{s0}(N) \le \operatorname{tr} \mathbf{P}_{s1}(N), \quad \operatorname{tr} \mathbf{P}_{s0}(N) \le \operatorname{tr} \mathbf{P}_{s2}(N)$$
 (55)

证明 由文献[2]给出的按矩阵加权线性最小方差融合 公式得证。

4 仿真例子

考虑两传感器二维跟踪系统:

$$\int (I_2 + A_1 q^{-1}) s(t) = C_1 q^{-1} w(t)$$
 (56)

$$\begin{cases} (I_2 + A_1 q^{-1})s(t) = C_1 q^{-1} w(t) \\ y_i(t) = s(t) + v_i(t), & i = 1, 2 \end{cases}$$
 (56)

$$A_1 = -\begin{bmatrix} 1 & T_0 \\ 0 & 1 \end{bmatrix}, \quad C_1 = \begin{bmatrix} T_0^2 / 2 \\ T_0 \end{bmatrix}$$
 (58)

其中 $s(t) = [s_1(t), s_2(t)]^T$, $s_1(t)$, $s_2(t)$ 为运动目标时刻 tT_0 处 的位置和速度, To 为采样周期, 且

$$\mathbf{y}_{i}(t) = \begin{bmatrix} y_{i1}(t) \\ y_{i2}(t) \end{bmatrix}, \quad \mathbf{v}_{i}(t) = \begin{bmatrix} \mathbf{v}_{i1}(t) \\ \mathbf{v}_{i2}(t) \end{bmatrix}$$
 (59)

 $y_{ij}(t)$ 和 $y_{ij}(t)$ 分别为位置和速度的观测信号, $v_{ij}(t)$ 和 $v_{ij}(t)$ 分别为相应的观测噪声,设w(t)是零均值、方差为 Q_w (标量) 的白噪声,它独立于零均值、方差阵为 Q_{u} 的白噪声 $v_i(t), i = 1, 2$,

$$Q_{w} = \sigma_{w}^{2}, \quad \mathbf{Q}_{vi} = \begin{bmatrix} \sigma_{vi1}^{2} & 0\\ 0 & \sigma_{vi2}^{2} \end{bmatrix}, \quad i = 1, 2$$
 (60)

取 N=1, 求局部 Wiener 平滑器 $\hat{s}_i(t|t+1)$, 及最优融合跟踪 平滑器 $\hat{s}_0(t|t+1)$ 。本例取

$$T_0 = 0.3$$
, $\sigma_w^2 = 1$, $Q_{vl} = \begin{bmatrix} 1 & 0 \\ 0 & 2.25 \end{bmatrix}$, $Q_{v2} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$ (61)

可求得

 $\operatorname{tr} \mathbf{P}_{s1} = 0.4090$, $\operatorname{tr} \mathbf{P}_{s2} = 1.0837$, $\operatorname{tr} \mathbf{P}_{s0} = 0.3640$ (62)显然可看到 $\operatorname{tr} P_{s0} < \operatorname{tr} P_{si}, \ i = 1,2$ 。由此看到信息融合估计可 提高估计精度。它的理论根据是式(55)。

图 1~图 8 给出了仿真结果。 图 1~图 4 为待估信号

s(t) 与局部 Wiener 平滑器 $\hat{s}_i(t|t+1)$, N=1 的比较图;图 5 和图 6 为待估信号 s(t) 与最优融合跟踪平滑器 $\hat{s}_0(t|t+1)$ 的比较图,其中实线为真实值,虚线为平滑器估值。由于图 1,图 3 和图 5 中真实值与估值两条曲线分辨不明显,为了区分局部估计与融合估计的精度,图 7 和图 8 给出了累积估计误差平方比较曲线,其中点划线为 $\hat{s}_i(t|t+1)$ 的误差平方和曲线,废线为 $\hat{s}_2(t|t+1)$ 的误差平方和曲线,实线为 $\hat{s}_0(t|t+1)$ 的误差平方和曲线。可看到融合估计提高了精度。

图 1 位置 $s_1(t)$ 与局部 Wiener 平滑器 $\hat{s}_{11}(t | t+1)$ 的比较图

图 2 速度 $s_2(t)$ 与局部 Wiener 平滑器 $\hat{s}_{12}(t|t+1)$ 的比较图

图 3 位置 $s_1(t)$ 与局部 Wiener 平滑器 $\hat{s}_{21}(t \mid t+1)$ 的比较图

图 5 位置 $S_1(t)$ 与最优融合 跟踪平滑器 $\hat{S}_{01}(t \mid t+1)$

图 4 速度 $s_2(t)$ 与局部 Wiener 平滑器 $\hat{s}_{22}(t \mid t+1)$ 的比较

图 6 位置 $s_1(t)$ 与最优融合 跟踪平滑器 $\hat{s}_{02}(t|t+1)$

图 7 位置估计误差平方和 比较曲线

图 8 速度估计误差平方和 比较曲线

5 结束语

在信息融合领域,多传感器信息融合 Kalman 滤波器已有许多报道^[1],但关于多传感器信号融合 Wiener 滤波器及关于信号融合平滑器和预报器的报道很少。关键技术和难点在于估计误差方差阵和协方差阵的计算,本文给出了它们的计算公式。本文利用 Kalman 滤波器方法,基于白噪声估值器和观测预报器^[3, 4],提出了多通道 ARMA 信号的两传感器最优信息融合 Wiener 滤波器,可统一处理滤波、平滑和预报问题,具有统一性和通用性。本文结果可直接推广到多传感器情形。可应用于通讯、信号处理、目标跟踪等许多领域。

参考文献

- [1] 何友,王国宏,陆大金,彭应宁.多传感器信息融合及其应用.北京:电子工业出版社,2000:1-11.
- [2] 邓自立。自校正滤波理论及其应用——现代时间序列分析方法.哈 尔滨:哈尔滨工业大学出版社,2003:1-375.
- [3] 邓自立。卡尔曼滤波与维纳滤波——现代时间序列分析方法. 哈尔滨: 哈尔滨工业大学出版社, 2001: 279 390.
- [4] 邓自立。最优滤波理论及其应用——现代时间序列分析方法.哈尔滨:哈尔滨工业大学出版社,2000.

邓自立: 男,1938 年生,教授,主要研究方向为状态估计、信号 处理、信息融合、时间序列分析等.

高 媛: 女, 1978年生, 硕士, 研究方向为信息融合状态估计.