双向协作 OFDM 系统中基于能量定价的功率分配与中继选择算法

庞立华* 李建东 张阳 陈丹

(西安电子科技大学综合业务网理论及关键技术国家重点实验室 西安 710071)

摘 要: 该文研究双向两跳协作多中继正交频分复用(OFDM)系统的网络寿命优化问题。由于网络寿命最大化的问题无法直接求解,该文提出一种基于对各节点能量定价的次优算法,即将各子载波的功率分配,中继及源节点选择进行分步优化。首先利用拉格朗日法求解两个方向上的源与各中继节点配对时的最优功率分配,使得网络在满足一定吞吐量和发送功率限制的前提下,消耗能量总价值最小;然后在所有可能的配对中选择每个方向最优的中继节点;最后选择损耗能量价值较小的数据流方向。分别考虑了源与目的节点间有无直接链路两种场景,在有直接链路场景下分析了最大比值合并(MRC)和选择合并(SC)两种分集方式对功率优化的影响。仿真结果表明,该文提出算法的网络寿命比已有算法有显著提高。

关键词:正交频分复用(OFDM);功率分配;中继选择;协作通信;分集合并
 中图分类号:TN92
 文献标识码:A
 文章编号:1009-5896(2011)07-1525-07
 DOI: 10.3724/SP.J.1146.2010.01312

Energy Pricing Based Power Allocation and Relay Selection Algorithm for Bidirectional Cooperative OFDM Systems

Pang Li-hua Li Jian-dong Zhang Yang Chen Dan (State Key Lab of Integrated Service Networks, Xidian University, Xi'an 710071, China)

Abstract: The network lifetime optimization issue is investigated for bidirectional two-hop cooperative Orthogonal Frequency Division Multiplexing (OFDM) systems recruiting multiple relays. Since direct treatment for the network lifetime maximization formulation is not feasible, a suboptimal strategy is proposed, which takes energy pricing concept for each node into account. Specifically, the power allocation for each subcarrier, relay, and source selection is optimized gradually rather than deriving jointly optimal solutions. Actually, by applying standard Lagrange technique, the optimal power assignment for each source/relay pair, which minimizes the total energy cost subject to limited transmission power and network throughput constraints, can be readily solved. An optimum relay is then selected out accordingly among all possible pairs, finally the direction of traffic flows can be determined by choosing the link with smaller price sacrifice. Two practical scenarios are considered, *i.e.*, a direct source-destination link is available or not while implementing the proposal. Moreover, when the direct link can be fully exploited, the impact of two diversity combining techniques including Maximal Ratio Combining (MRC) and Selective Combining (SC) on the power allocation optimization is theoretically derived. Simulation results indicate that, the network lifetime by utilizing the proposed algorithm outperforms the existing approaches significantly. **Key words**: Orthogonal Frequency Division Multiplexing (OFDM); Power allocation; Relay selection; Cooperative communications; Diversity combining

1 引言

协作分集技术由于能够扩大传输半径及对抗衰 落的影响,成为近年来无线通信领域的研究热点。

*通信作者: 庞立华 lhpang.xidian@gmail.com

多种协作机制已被提出^[1,2],其中包括放大转发 (Amplify and Forward, AF)和译码转发(Decode and Forward, DF)。AF 模式由于不需要对接收信息 进行检测和译码,能缩短信息处理的时延并实现简 单,得到广泛关注。在协作分集网络的某些应用场 景中,两个节点可能需要在中继的帮助下交互信息, 这种双向的通信(bidirectional communication)最近 受到普遍关注,已有多位学者研究了双向协作分集 网络协议^[3-5]。

²⁰¹⁰⁻¹¹⁻²⁹ 收到, 2011-03-28 改回

国家自然科学基金(60702057),国家杰出青年科学基金(60725105), 长江学者和创新团队发展计划(IRT0852),综合业务网国家重点实验 室基金(ISN1003002)和高校基础科研基金(JY10000901030)资助课 题

另一方面,当前应用的无线网络,终端多依赖 于电池供电,而电池电量有限,如何延长设备使用 寿命成为保证信息传输及减轻电池补充负担的关键 问题。在传统的点对点通信中,已有多种优化网络 寿命的方法被提出^[6-8],如文献[6]提出了一种适用 于 Ad hoc 网络的路由算法来延长网络寿命。文献[8] 考虑通过寻找高效的能量树使网络寿命最大化。协 作网络的寿命优化在近些年也开始受关注^[9-11],文 献[9]提出了4种AF协议下的中继选择与功率分配 策略,分别是基于最小化传输功率(MTP),最大化 剩余能量(MRE),最大化能量效率(MEI)及最小化 中断概率(MOP)准则, 仿真证明, MEI 的平均网络 寿命性能最佳; 文献[11]提出了 DF 模式下在发端和 中继端分别对能量定价,接收端对信息最大比值合 并(Maximum Ratio Combining, MRC), 使价格函 数最低来分配功率和选择中继。

上述研究成果均是基于平坦衰落信道的假设。 然而在宽带通信系统中,系统带宽比相干带宽大得 多导致频率选择性信道,被广泛应用消除信道频率 选择性的技术为 OFDM。基于 OFDM 的中继系统 已开始被研究^[12-14]。如文献[12]将 OFDM 系统子载 波配对、中继选择、功率分配进行联合建模优化。 文献[13]研究了 OFDM 多用户无线局域网(WLAN) 的中继选择;文献[14]考虑两个用户相互作为对方的 中继,将各自子载波分为两组来交互信息。就笔者 所知,协作多中继 OFDM 系统网络寿命的优化依然 是一个开放的问题。

本文研究双向两跳协作多中继 OFDM 系统网 络寿命优化问题。首先试图对网络寿命最大化进行 建模,由于与源和中继节点选择问题相互嵌套,从 而无法通过一次计算得到联合最优解。因此笔者考 虑将 OFDM 各子载波的功率分配、中继节点选择、 源节点选择依次分步考虑得到网络寿命优化的次优 解。其中功率分配策略基于对各节点能量的定价, 建模为保证网络 QoS(Quality of Service)的前提下, 每时间区间内所使用能量的总价值最小的优化问 题。当得到各源与中继节点配对的最优功率后,选 择消耗能量总价值最小的配对组合作为当前时间区 间将要进行传输的链路。笔者同时考虑了源与目的 节点间有无直接链路两种场景,并研究了有直接链 路场景下接收信息最大比值合并(MRC)和选择合并 (Selection Combining, SC)两种方式下的功率分配。

2 系统模型与问题描述

2.1 系统模型

考虑一个双向的协作分集网络,由两个互为源和目的的节点及 L 个中继节点组成,每个节点都工

作在半双工模式。用 S₁和 S₂分别表示两个互为源和 目的的节点, R_l, l = 1,…,L 表示第 l 个中继节点,工 作在 AF 模式下。假定信道为频率选择性且为块衰 落,即在多个时间区间内保持不变或缓变,采用 OFDM 技术并设子载波个数为 N。每个方向上的传 输都由两个时隙组成,每个时隙长为 T_b / 2,其中 T_b 表示分配的时间区间长度。每个时间区间内仅选择 一个方向传输数据。

令源节点在子载波 n 上的发送符号 x_n 满足 $E\{|x_n|^2\}=1, 其中 E\{\}$ 表示数学期望; $h_{s,ln} \sim$ $\mathcal{CN}(0,\sigma_{hsl}), h_{l.d.n} \sim \mathcal{CN}(0,\sigma_{hsd}) 分别表示源到中继节$ 点 R_l , R_l 到目的节点在子载波 n 上的信道增益, $h_{s.d.n} \sim CN(0, \sigma_{hsd})$ 表示源与目的节点间存在直接链 路时的信道增益。各节点处子载波n的噪声功率标 记为 N_0 。不失一般性,假定当前时间区间内 S_1 作为 源节点, S, 作为目的节点。在时隙1内, S, 在子载 波 $n = 1, \dots, N$ 以功率 $P_{s,n}$ 广播信息;在时隙2,选定 的中继节点 R_m 在相同子载波以功率 P_{Rm} 将接收自 源节点的信息归一化并转发给目的节点,归一化因 $\vec{+} g_n = \sqrt{P_{R_n,n} / (P_{S,n} \mid h_{s,l,n} \mid^2 + N_0)}$. $\Leftrightarrow \alpha_n = |h_{s,l,n}|^2$ $/N_0$, $\beta_n = |h_{l,d,n}|^2 / N_0$ 分别表示源与中继节点 R_l 间及 R₄与目的节点间发送功率为 1 时的接收信噪比 (Signal-to-Noise Ratio, SNR),将传输带宽归一化, 则中继链路的等效接收 SNR 表示为

$$\mathrm{SNR}_{n}^{\mathrm{no}-\mathrm{dc}} = \frac{P_{S,n}\alpha_{n}P_{R_{l},n}\beta_{n}}{P_{S,n}\alpha_{n} + P_{R_{l},n}\beta_{n} + 1}$$
(1)

时隙 1 内直接链路的接收 SNR 为 SNR^{dc}_n = $P_{s,n}\gamma_n$, 其中 $\gamma_n = |h_{s,d,n}|^2 / N_0$ 。

2.2 问题描述

假定网络中各节点依赖于电池供电,且节点j电池总电量为 E_j^{tot} , $j = 1, \dots, L + 2$,其中 $j = 1, \dots, L$ 表示L个中继节点,j = L + 1, L + 2表示两个源或目 的节点。每个节点慢慢消耗其电量来参与消息的传 输。当网络中任意方向上的源节点或所有的中继节 点在某时间区间的剩余电量都不足以支持当次通信 所需,此网络将不能继续生存。为了保证网络的 QoS 需求,定义网络寿命为直到任一方向上的所有链路 都不满足传输速率要求前的网络运行时间^[10,15]

 $LT = \max \{t : Cap(S_i, t') \ge R_b, i = 1, 2, 0 < t' \le t\}$ (2) 其中 Cap(S_i, t')表示 t' 时刻源节点为 S_i 时的系统容 量, R_b 表示目标速率。可将网络寿命表示为离散形 式 $LT = m \cdot T_b$, 令 $P_j(n,t)$ 表示节点 j 在 t 时刻子载 波 n 上所分配的功率,则网络寿命最大化的问题可 以被建模为

$$\max_{S_i, R_l, P_j(n,t)} m \tag{3a}$$

s.t.
$$\sum_{t=1}^{m} \sum_{n=1}^{N} P_j(n,t) T_b/2 \le E_j^{\text{tot}}, \ j = 1, \cdots, L+2$$
 (3b)

$$\operatorname{Cap}\left(S_{i}(t), R_{i}(t), P_{j}(n, t)\right) \geq R_{b}, \quad j = S_{i}(t), R_{i}(t),$$

$$t = 1, \cdots, m, \quad n = 1, \cdots, N$$
(3c)

$$P_{j}(n,t) \ge 0, \quad \sum_{n=1}^{N} P_{j}(n,t) \le P_{\max}, \quad j = 1, \cdots, L+2,$$

$$t = 1, \cdots, m, \quad n = 1, \cdots, N$$
(3d)

其中 $i = 1,2, R_i^*(t) = \arg \max_{S_i, P_j(n,t)} \{m\}$ 表示各时间区间 S_i 作为源节点时所选的中继节点, P_{\max} 表示各节点 发送功率限制。可见网络寿命最大化同时包含功率 分配、中继及源节点选择 3 个问题,它们相互嵌套, 无法通过一次计算得到联合最优解,因此本文提出

一种次优算法,考虑在各时间区间分步优化。

注意到,当网络到达了它的寿命,有些节点可能依然会有电量剩余。所以,网络寿命不仅依赖于 每次传输实际所用能量,还依赖于各节点的剩余能 量。为了平衡的使用网络中各节点的能量,基于对 节点电量的定价提出一种功率分配和中继及源节点 选择机制。令 $E_{S,n} = P_{S,n}T_b/2 \mathcal{D} E_{R_l,n} = P_{R_l,n}T_b/2 分别$ $表示此时间区间内的源节点<math>S_i$ 及中继节点 R_l 在其 发送时隙内子载波 n上消耗的能量,当源节点 S_i 与 中继节点配对。首先考虑在某时刻每个方向上的源 节点与各中继节点配对时的功率分配,为使两个时 隙内消耗能量的总价值最小,目标函数可定义为

$$C_{SR_{l}}\left(P_{S,n}, P_{R_{l},n}\right) = \rho_{S} \sum_{n=1}^{N} E_{S,n} + \rho_{R_{l}} \sum_{n=1}^{N} E_{R_{l},n}$$
$$= \left(\rho_{S} \sum_{n=1}^{N} P_{S,n} + \rho_{R_{l}} \sum_{n=1}^{N} P_{R_{l},n}\right) T_{b}/2 \quad (4)$$

这里 ρ_s 和 ρ_{R_l} 表示此时间区间内的源节点 S_i 及中继 节点 R_l 的能量价格。限定条件仍然考虑网络的 QoS 需求及各节点的发送功率限制。令 $(P_{S,n}^*, P_{R_l,n}^*) =$ arg min { $C_{SR_l}(P_{S,n}, P_{R_l,n})$ } 表示此方向上当 R_l 作为中 继节点时的最优功率分配,则此方向上最优的中继 即为 $R^* = \arg\min_{R_l} C_{SR_l}(P_{S,n}^*, P_{R_l,n}^*)$,之后再比较两个 方向上消耗能量价值的大小来确定此时间区间由 S_1

方向上消耗能量价值的天小米确定此时间区间田 S_1 还是 S_2 作为源节点。

本文将 3 个问题分步优化,当仅有其中一个或 两个问题的条件满足时,提出的算法仍适用。例如 当网络中仅有一个源(中继)节点时,只需考虑功率 分配和中继(源)选择;若为 3 节点单向网络,则只 需考虑功率分配。

3 功率分配算法

本节分别考虑源节点与目的节点间有无直接链

路两种场景下的功率分配及最优价格因子的选取问 题。

3.1 无直接链路

由式(1), $S_1 与 S_2$ 之间不存在直接链路时子载波 n的互信息表示为

$$I_n^{\text{no}_\text{dc}} = \log_2 \left(1 + \frac{P_{S,n} \alpha_n P_{R_l,n} \beta_n}{P_{S,n} \alpha_n + P_{R_l,n} \beta_n + 1} \right)$$
(5)

式(5)不是 $P_{S,n} 与 P_{R_{l},n}$ 的联合凹函数,因此我们对 SNR $_{n}^{no}-dc$ 应用高 SNR 近似^[3,16]

$$\mathrm{SNR}_{n}^{\mathrm{no}-\mathrm{dc}} = \frac{P_{S,n}\alpha_{n}P_{R_{l},n}\beta_{n}}{P_{S,n}\alpha_{n} + P_{R_{l},n}\beta_{n} + 1} \approx \frac{P_{S,n}\alpha_{n}P_{R_{l},n}\beta_{n}}{P_{S,n}\alpha_{n} + P_{R_{l},n}\beta_{n}}$$
(6)

此 SNR 表达式是 $P_{S,n} = P_{R_{l,n}}$ 的联合凹函数,从而可得到唯一解。求解任意源节点与中继节点配对时的最优功率分配 $(P_{S,n}^*, P_{R,n}^*)$ 可以被建模为优化问题

$$(P_{S,n}^*, P_{R_l,n}^*) = \arg\min_{P_{S,n}, P_{R_l,n}} \left(\rho_S \sum_{n=1}^N P_{S,n} + \rho_{R_l} \sum_{n=1}^N P_{R_l,n} \right) (7a)$$

s.t.
$$\frac{1}{2N} \sum_{n=1}^{N} \log_2 \left(1 + \frac{P_{S,n} \alpha_n P_{R_l,n} \beta_n}{P_{S,n} \alpha_n + P_{R_l,n} \beta_n} \right) \ge R_b \tag{7b}$$

$$\sum_{n=1}^{N} P_{S,n} \le P_{\max}, \quad \sum_{n=1}^{N} P_{R_{l},n} \le P_{\max}$$
(7c)

$$P_{S,n} \ge 0, \quad P_{R_l,n} \ge 0 \tag{7d}$$

应用 KKT(Karush-Kuhn-Tucker)条件^[17]求解 可得

$$P_{S,n} = \left[\left(\rho_S \left(1 + \sqrt{(\alpha_n \rho_{R_l})/(\beta_n \rho_S)} \right) \right)^{-1} \left(\lambda - \zeta_n \right) \right]^+$$
(8a)
$$P_{R_l,n} = \left[\left(\rho_{R_l} \left(1 + \sqrt{(\beta_n \rho_S)/(\alpha_n \rho_{R_l})} \right) \right)^{-1} \left(\lambda - \zeta_n \right) \right]^+$$
(8b)

其中 $\zeta_n = \left(\sqrt{\alpha_n} + \sqrt{\beta_n \rho_S / \rho_R}\right)^2 / (\alpha_n \beta_n), [x]^+ = \max\{0, x\}, \lambda$ 是拉格朗日乘子,可代入式(7b)取等号求得。 3.2 有直接链路

本节考虑 S₁ 与 S₂ 间存在直接链路时的功率分 配。根据接收端对信息的分集合并方式分为 MRC 与 SC 两种情况讨论。

3.2.1 最大比值合并由 2.1 节的描述,目的节点在 子载波 *n* 上 MRC 的接收 SNR 为

$$\mathrm{SNR}_{n}^{\mathrm{MRC}} = P_{S,n}\gamma_{n} + \mathrm{SNR}_{n}^{\mathrm{no}-\mathrm{dc}}$$
(9)

若在子载波 n 不采用协作, 而是由源节点在两个时 隙内向目的节点直接传输相同的信息, 假定两时隙 内信道衰落慢变化, 则此时在子载波 n 上的等效接 收 SNR 为 SNR^{dir}_n = $2P_{s,n}\gamma_n$, 为保证 MRC 的有效 性, 需满足 $P_{s,n}\alpha_n P_{R_{i},n}\beta_n/(P_{s,n}\alpha_n + P_{R_{i},n}\beta_n + 1) > P_{s,n}\gamma_n$ 即 $P_{R_{i},n}\beta_n(\alpha_n - \gamma_n) > \gamma_n(P_{s,n}\alpha_n + 1)$ 则

$$\gamma_n < \alpha_n \tag{10}$$

是保证 MRC 比两时隙内直接传输相同信息获得更 大增益的必要条件。若各子载波均满足式(10),则 如何找到任意 $S_i 与 R_i$ 配对的最优功率分配方案 $(P_{s,n}^*, P_{R,n}^*)$ 按式(6)近似后建模为

$$\begin{pmatrix} P_{S,n}^{*}, P_{R_{l},n}^{*} \end{pmatrix} = \arg \min_{P_{S,n}, P_{R_{l},n}} \left(\rho_{S} \sum_{n=1}^{N} P_{S,n} + \rho_{R_{l}} \sum_{n=1}^{N} P_{R_{l},n} \right) (11a)$$

s.t.
$$\frac{1}{2N} \sum_{n=1}^{N} \log_{2} \left(1 + P_{S,n} \gamma_{n} + \frac{P_{S,n} \alpha_{n} P_{R_{l},n} \beta_{n}}{P_{S,n} \alpha_{n} + P_{R_{l},n} \beta_{n}} \right) \ge R_{b}$$
(11b)

$$\sum_{n=1}^{N} P_{S,n} \le P_{\max}, \quad \sum_{n=1}^{N} P_{R_{l},n} \le P_{\max}$$
(11c)

$$P_{S,n} \ge 0, \quad P_{R_l,n} \ge 0 \tag{11d}$$

应用 KKT 条件,求得可进行功率分配的前提 是各子载波需满足

$$\rho_{R_l}/\beta_n < \rho_S/\gamma_n \tag{12}$$

即中继链路单位 SNR 代价比直接链路小。综合考虑,当各子载波同时满足式(10)和式(12)时,可进行 功率分配:

$$P_{S,n} = \left[\frac{\lambda \cdot \beta_n \left(\sigma_n + \gamma_n\right)^2 - \rho_{R_l} \left(\sigma_n + \frac{\rho_S}{\rho_{R_l}}\beta_n\right)^2}{\rho_{R_l} \cdot \sigma_n \left(\sigma_n + \gamma_n\right) \left(\sigma_n + \frac{\rho_S}{\rho_{R_l}}\beta_n\right)} \right]$$
(13a)

 $P_{R_l,n} =$

$$\frac{\left|\frac{\lambda \cdot \beta_n \left(\sigma_n + \gamma_n\right)^2 - \rho_{R_l} \left(\sigma_n + \frac{\rho_S}{\rho_{R_l}} \beta_n\right)^2}{\rho_{R_l} \cdot \sigma_n \left(\sigma_n + \gamma_n\right) \left(\sigma_n + \frac{\rho_S}{\rho_{R_l}} \beta_n\right)} \cdot \frac{\alpha_n \left(\frac{\rho_S}{\rho_{R_l}} - \frac{\gamma_n}{\beta_n}\right)}{\left(\sigma_n + \gamma_n\right)}\right|^{\mathsf{T}}}$$
(13b)

其中 $\sigma_n = \sqrt{\rho_S \alpha_n \beta_n / \rho_{R_l} + \rho_S \beta_n \gamma_n / \rho_{R_l} - \alpha_n \gamma_n}, \lambda$ 是拉格朗日乘子,可代入式(11b)取等号求得。

3.2.2 选择合并由上节的描述可知,MRC场景下 仅在各子载波均满足式(10)和式(12)两条件时才可 进行式(13)所示的功率分配。然而当子载波数 N 较 大时,可能存在某些子载波不满足此两条件,则式 (13)将不再适用。若在接收端对信息进行 SC 可解决 此问题。其基本思想是:时隙 1 由源节点广播信息, 在时隙 2 根据链路状况选择由源节点重复发送或由 中继节点转发时隙 1 内源节点的信息。此时的功 率 优 化 可 描 述 为 计 算 min { $C_{SR_{l}}^{nod}$ ^{cd} ($P_{S,n}^{*}$, $P_{R_{l},n}^{*}$), $C_{s}^{dir}(P_{S,n}^{*})$ }并以小者确定本时间区间由直接链路还 是中继链路进行传输,其中 $C_{SR_{l}}^{nod}$ ^{cde} ($P_{S,n}^{*}$, $P_{R_{l},n}^{*}$)表示仅 用中继协作时的能量价格,可由式(8)得到; $C_{s}^{\text{dir}}(P_{s,n}^{*}) = T_{b}\rho_{s}\sum_{n=1}^{N}P_{s,n}^{*}$,其中 $P_{s,n}^{*}$ 表示两时隙都 由源节点直接发送相同信息给目的节点时的最优功 率分配,可建模为

$$P_{S,n}^* = \arg\min_{P_{S,n}} \left(\sum_{n=1}^N P_{S,n} \right)$$
(14a)

s.t.
$$\frac{1}{2N} \sum_{n=1}^{N} \log_2 \left(1 + 2P_{S,n} \gamma_n \right) \ge R_b$$
 (14b)

$$\sum_{n=1}^{N} P_{S,n} \le P_{\max}, \quad P_{S,n} \ge 0$$
 (14c)

求得

$$P_{S,n} = \left[\lambda - \frac{1}{2\gamma_n}\right]^+ \tag{15}$$

其中λ是拉格朗日乘子,可代入式(14b)取等号求得。 3.3 价格因子的选取

如何选取最优的能量价格因子是非常复杂困难 的问题,可在将来的工作中考虑。由2.2节的描述, 网络寿命不仅依赖于每次传输实际所用能量,还依 赖于各个节点的剩余能量。因此本文假定网络中各 节点能量价格与本节点剩余能量的m次幂成反比^[11]

$$\rho_j = \left(\frac{E_j^{\text{tot}}}{E_j^{\text{rem}}}\right)^m, \quad j = 1, \cdots, L+2 \tag{16}$$

其中 E_j^{rem} 表示节点 j 的剩余能量。变量 m 用来保证 网络中各节点的能量可以被平衡地使用,大量仿真 结果表明,在不同场景下,网络寿命均随 m 取值的 增大而增加。然而当 m 取值较大时,随着各节点剩 余能量的减少,其价格因子取值迅速变大,使得式 (8)或式(13)中 λ 的取值变化剧烈,导致求解最优功 率分配极其困难。为了方便功率求解,将在仿真中 取 $m = 2^{[11]}$ 。

4 仿真结果与分析

考虑一个 6 节点的网络,包括两个互为源和目的的节点及 L = 4 个中继节点。参考文献[10,11],取 $\sigma_{hsl} = \sigma_{hld} = 1$,噪声方差 $N_0 = 10^{-4}$,时间区间 $T_b = 10^{-3}$ s,各节点总能量 $E_j^{tot} = 10$ J,节点最大发送 功率 $P_{max} = 64$ W,子载波数 N = 64。考虑4种比 对算法:(1)功率分配时不考虑能量定价即文中算法 的能量价格因子取 $\rho_j = 1, j = 1, \dots, L+2$,中继及源 节点选择与文中方法相同(表示为 CS1);(2)随机选 择源和中继节点,功率分配时用文中算法(表示为 CS2);(3)随机选择源和中继节点,功率分配时文中 算法的能量价格因子取 $\rho_j = 1, j = 1, \dots, L+2$ (表示 为 CS3);(4)文献[9]的 MEI 算法在其提出的4种网 络寿命优化算法中性能最佳,基本思想是以一次通 信过程中消耗能量占本节点剩余能量比例最小为目 标进行功率分配与中继选择。为公平比较,在原算 法思想的基础上考虑多载波及源节点选择(表示为 MEI)。

表 1 比较了各算法的开销。不失一般性,假定 由节点 S₁处理数据,本文算法及 MEI 算法中其它各 节点需要在通信初始阶段将各自初始能量信息发送 给节点 S₁,S₁根据获取的信道增益信息作 2L 次(SC 场景下作 2L + 2 次)功率计算后选择最优的源与中 继节点对,传输结束后,根据传输中所分配的功率 值可得到各节点的剩余能量。可见,与其他算法相 比,本文算法及 MEI 算法所需开销最大,可在将来 的工作中考虑低开销的算法。

下面对本文算法及比对算法作仿真,进行性能 评估。其中有直接链路 MRC 场景下,每个样本的 产生均满足式(10)与式(12)。

图1显示了S₁与S₂之间不存在直接链路时,本 文算法与几种比对方法在不同目标速率下的网络寿 命性能。从图中可以看出,本文考虑能量定价的算 法性能最佳,尤其在低目标速率下优势更为明显, 这是因为目标速率较低时,会有多条链路满足 QoS 要求,当对节点能量定价,会更均衡地使用网络中 各节点的能量,从而增长网络寿命。MEI 算法的开 销虽与本文算法相同,性能却次于本文算法,如目 标速率为 3.4 bps 时其性能比本文算法损失了 6.3%。 开销最小的 CS3 算法性能最差,目标速率为 3.4 bps 时其网络寿命性能比本文算法损失了 33.3%。同时 可以看到,虽然 CS2 算法随机选择源和中继节点, 性能却优于考虑源和中继节点选择的 CS1,这充分 证明了能量定价的优越性。

图 2 仿真了 S_1 与 S_2 之间存在直接链路且 σ_{hsd} = 1,接收端对信息 MRC 时,本文所提算法与几种 比对方法在不同目标速率下的网络寿命性能。与无 直接链路时相比,由于此时接收 SNR 的增大,相同 目标速率下的网络寿命明显增长,如目标速率为 4.2 bps 时,本文算法在无直接链路时的网络寿命大概 为 0.65×10⁴个时间区间,而有直接链路时的网络寿

命大概是2.2×10⁴个时间区间。图中其它各曲线的 趋势与图1类似。图3演示了S1与S2之间存在直接 链路且 $\sigma_{\text{bed}} = 1$,接收端对信息 SC 时,几种功率分 配与中继选择算法在不同目标速率下的网络寿命性 能。从图中明显可以看出,本文算法与 MEI 算法的 性能曲线基本重合, CS1 的网络寿命性能在目标速 率为 3.6 bps 时比本文算法仅损失了 3%,随着目标 速率的增大也逐渐逼近于本文算法,这是因为此时 直接链路信道状况与中继链路信道状况相当,而直 接链路的信息是两次传输的叠加,也就是此时两个 时隙内直接链路等效 SNR 比中继链路等效 SNR 大 得多,从而直接链路传输效果好,接收端对信息选 择合并时基本都是只选择直接链路, 使得定价的优 势无法发挥。下面我们看一下,当直接链路信道状 况变差时,接收端 MRC 及 SC 的网络寿命性能是否 有所改变。

图 4 显示了 $S_1 ext{ = } S_2$ 之间存在直接链路且 σ_{hsd} = 0.5,接收端 MRC 时,几种算法在不同目标速率 下的网络寿命性能。可以看出,目标速率为 4.2 bps 时,此时本文算法的网络寿命约为 1.5×10⁴ 个时间 区间,优于图 1 的结果,但低于图 2,这与我们的 直观理解是吻合的。图 5 表示 $S_1 ext{ = } S_2$ 之间存在直接 链路且 $\sigma_{hsd} = 0.5$,接收端 SC 时的网络寿命性能。 与图 3 相比,此时本文所提算法的优势在低目标速 率下非常明显,这是因为此时直接链路的性能比图 3 中变差,中继链路被选择的机会增多,从而定价 的优势显现。

另外,从图中我们还发现,考虑能量定价的曲 线总是在低目标速率较下性能较好,随着目标速率 的增大,曲线下降很快,而不考虑定价的曲线下降 趋势则较平缓。因此,本文提出的算法更适用于有 多条链路满足 QoS 要求的网络。

5 结束语

在双向通信的场景下,本文基于对网络节点能 量的定价提出了一种优化网络寿命的次优算法。首

	CS1		CS2		CS3		MEI		本文算法	
是否需要初始 能景信自态互	否		是		否		是		是	
能重信总父互 是否需要获取 所有信谨遵并	是		仅 需 $h_{s_i,l,n}$, $i = 1, 2,$		同 CS2		是		是	
所有信迫增益 信息			R_{i^*} 为随机选择 节点	的中继						
一次通信过	$\rm no_dc/MRC$	\mathbf{SC}	$\rm no_dc/MRC$	\mathbf{SC}	$\rm no_dc/MRC$	\mathbf{SC}	$\rm no_dc/MRC$	\mathbf{SC}	$\rm no_dc/MRC$	\mathbf{SC}
程甲计算功 率次数	2L	2L + 2	1	2	1	2	2L	2L + 2	2L	2 <i>L</i> +2

表1 算法开销比较

图 4 $\sigma_{\text{bsd}} = 0.5$,接收端 MRC 时各算法网络寿命与目标速率关系

先对各源与中继节点配对时的功率分配建模,目标 是满足一定 QoS 及节点发送功率限制的条件下,使 一个时间区间内所消耗能量的总价值最小,可将其 转化为凸优化问题解决;然后对两个源节点,分别 以一个时间区间内所消耗能量的总价值最小为目标 选择最佳中继节点;再比较两个源节点与各自最佳 中继节点配对时消耗能量的总价值,选择价值小者 作为本时间区间将要进行传输的链路。由于将3个 问题分步考虑,当仅有其中一个或两个问题的条件 满足时,提出的算法仍适用。分别考虑了源与目的 节点间有无直接链路两种场景,及有直接链路场景 下目的节点对接收信息MRC及SC两种分集方式下 的功率优化。仿真表明,本文提出算法的网络寿命 在各场景中比已有算法都有所提高,尤其在目标速 率不太高,网络中有多条链路满足 QoS 要求时,本 文算法的性能优势更明显。同时, 仿真中可以看出, 有直接链路接收端 MRC 场景下的性能最好,这与 我们的直观理解吻合,然而当所使用的子载波数较 多,接收端 MRC 时可能会有某些子载波不满足式 (10)和式(12)的功率分配条件,使得算法的适用场景 受限。此外,本文算法信息交互的开销较大。因此, 笔者将来会考虑各子载波独立选择中继节点时的功 率分配,子载波配对及如何降低算法开销等问题。

参考文献

[1] Sendonaris A, Erkip E, and Aazhang B. User cooperation

图 5 $\sigma_{\rm hsd} = 0.5$,接收端 SC 时各算法网络寿命与目标速率关系

diversity. Part I, II. IEEE Transactions on Communications, 2003, 51(11): 1927–1948.

- [2] Laneman J, Tse D, and Wornell G. Cooperative diversity in wireless networks: efficient protocols and outage behavior. *IEEE Transactions on Information Theory*, 2004, 50(12): 3062–3080.
- [3] Yi Z and Kim I. An opportunistic-based protocol for bidirectional cooperative networks. *IEEE Transactions on Wireless Communications*, 2009, 8(9): 4836–4847.
- [4] Ju M and Kim I. Joint relay selection and opportunistic source selection in bidirectional cooperative diversity networks. *IEEE Transactions on Vehicular Technology*, 2010, 59(6): 2885–2897.
- [5] 唐伦,刘通,陈前斌,曾孝平. Two-way 中继系统协作节点选 择及功率分配策略. 电子与信息学报, 2010, 32(9): 2077-2082.
 Tang Lun, Liu Tong, Chen Qian-bin, and Zeng Xiao-ping.
 Cooperative node selection and power allocation strategy in two-way relay system. *Journal of Electronics & Information Technology*, 2010, 32(9): 2077-2082.
- [6] Varaprasad G. Lifetime enhancement routing algorithm for mobile Ad hoc networks. *IET Communications*, 2011, 5(1): 119–125.
- [7] Bicakci K, Ibrahim E, and Tavli B. Lifetime bounds of wireless sensor networks preserving perfect sink unobservability. *IEEE Communications Letters*, 2011, 15(2): 205–207.
- [8] Marks R, Das A, and El-Sharkawi M. Maximizing lifetime in

an energy constrained wireless sensor array using team optimization of cooperating systems. Proceedings of the 2002 International Joint Conference on Neural Networks, Hawaii, USA, 2002: 371–376.

- [9] Huang W, Hong Y, and Kuo C. Lifetime maximization for amplify-and forward cooperative networks. *IEEE Transactions on Wireless Communications*, 2008, 7(5): 1800–1805.
- [10] Haijiaghayi M, Dong M, and Liang B. Maximizing lifetime in relay cooperation through energy-aware power allocation. *IEEE Transactions on Signal Processing*, 2010, 58(8): 4354–4366.
- [11] Ke F, Feng S, and Zhuang H. Relay selection and power allocation for cooperative network based on energy pricing. *IEEE Communications Letters*, 2010, 14(5): 396–398.
- [12] Dang W, Tao M, Mu H, and Huang J. Subcarrier-pair based resource allocation for cooperative multi-relay OFDM systems. *IEEE Transactions on Wireless Communications*, 2010, 9(5): 1640–1649.
- [13] Siriwongpairat W, Sadek A, and Liu K. Cooperative communications protocol for multiuser OFDM networks. *IEEE Transactions on Wireless Communications*, 2008, 7(7): 2430–2435.
- [14] Yatawatta S and Petropulu A. A multiuser OFDM system with user cooperation. Conference Record of the Thirty-

eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, Nov. 2004: 319–323.

- [15] Zhou Z, Zhou S, Cui J, and Cui S. Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks. *IEEE Transactions on Wireless Communications*, 2008, 7(8): 3066–3078.
- [16] Hammerstrom I and Wittneben A. Power allocation schemes for amplify-and-forward MIMO-OFDM relay links. *IEEE Transactions on Wireless Communications*, 2007, 6(8): 2798–2802.
- [17] Boyd S and Vandenberghe L. Convex Optimization. United Kingdom, Cambridge University Press, Seventh Printing, 2009, Chapter 5.
- 庞立华: 女,1985年生,博士生,研究方向为协作通信技术、通 信信号处理.
- 李建东: 男,1962年生,博士,教授,博士生导师,从事移动通 信、软件无线电、认知无线电、自组织网络、宽带无线 IP 技术等方面的研究.
- 张阳: 男,1984年生,博士生,研究方向为多天线正交频分复 用系统中的信道估计、干扰消除与检测技术.
- 陈 丹: 男,1984 年生,博士生,研究方向为多天线自组织网络 中的多址接入技术.