三维电子光学模拟器二阶有限元方法研究

胡 权 黄 桃 杨中海 李 斌 李建清 (电子科技大学大功率微波电真空器件技术国防科技重点实验室 成都 610054)

摘 要: 该文介绍了二阶有限元方法的基本理论,同时将其应用到 3 维微波管模拟器套装(Microwave TubeSimulator Suite, MTSS)中的电子光学模拟器(Electron Optics Simulator, EOS)。比较了 EOS 分别采用一阶和二阶有限元方法的计算结果,得到了二阶具有更好的收敛性以及更快的收敛速度的结果。关键词: 电子光学系统;电子枪;有限元; CAD中图分类号: O463.1; TN12文献标识码: A文章编号: 1009-5896(2010)07-1726-05DOI: 10.3724/SP.J.1146.2009.01049

3D Second-Order Finite Element Method for Electron Optics Simulator

Hu Quan Huang Tao Yang Zhong-hai Li Bin Li Jian-qing

(Vacuum Electronics National Lab, University of Electronic Science and Technology of China, Chengdu 610054, China)

Abstract: In this paper, 3D second-order finite element method for electron optic system is presented. And it is implemented in Electron Optics Simulator (EOS). The results are compared between first-order finite element method and second-order finite element method. Second-order finite element method has better convergence and faster convergence rate.

Key words: Electron optic system; Electron gun; Finite element method; CAD

1 引言

随着计算机软硬件技术的不断提高,计算机模 拟技术得到了飞速发展。可用于模拟电子光学系统 的软件也由2维发展到了3维,一些专用和商用软 件逐步出现,如MICHELLE^[1,2],OPERA^[3],Magic^[4], CST^[5]等。电子科技大学研发的电子光学模拟器 (Electron Optics Simulator, EOS)^[6],是3维微波管 模拟器套装 (Microwave Tube Simulator Suite, MTSS)^[7]的重要组成部分。EOS采用3维实体建模、 3维有限元网格自动划分、静态轨迹迭代算法求解 电子运动状态。可用于模拟设计轴对称电子枪、栅 控电子枪、多注电子枪、带状注电子枪、轴对称及 非轴对称多级降压收集极等。

EOS 采用的是常应变四面体单元,即一阶有限 元方法。实际工程中的电场往往随坐标变化,但常 应变四面体单元中的电场分量都是常量,难以适应 急剧变化的电场。为了保证计算精度,必须采用密 集的计算网格,这样节点数量将很多,方程组十分 庞大。若采用高次插值函数,单元中的场是变化的,

2009-07-29 收到, 2009-12-21 改回

国家自然科学基金(10476004, 60601004)和国防科技重点实验室基 金资助课题

通信作者: 胡权 huquan1981@uestc.edu.cn

则可用较少的单元、较少的自由度而得到较高的计 算精度,从而可降低方程组的规模。为此,我们在 EOS 中引入了二阶插值函数^[8,9]。

2 有限元理论

2.1 体积坐标

如图 1 所示四面体单元 *ijmp* 中,任意一点 Q 的 位置可由下列 4 个比值来确定。

图 1 四面体单元体积坐标

 $L_i = V_i / V, L_j = V_j / V, L_m = V_m / V, L_p = V_p / V$ (1) 式中 V 为四面体 *ijmp* 的体积, V_i 为四面体 *Qjmp* 的体积, V_j 为四面体 *Qmpi* 的体积, V_m 为四面体 *Qijp* 的体积, V_p 为四面体 *Qijm* 的体积。

$$V = \frac{1}{6} \begin{vmatrix} 1 & x_i & y_i & z_i \\ 1 & x_j & y_j & z_j \\ 1 & x_m & y_m & z_m \\ 1 & x_p & y_p & z_p \end{vmatrix}$$
(2)

这4个比值称为Q点的体积坐标。由于 V_i + V_j + V_m + V_p =V,因此 L_i + L_j + L_m + L_p =1。

根据几何关系,直角坐标与体积坐标之间应符 合下列关系:

$$\begin{vmatrix} L_i \\ -L_j \\ L_m \\ -L_p \end{vmatrix} = \frac{1}{6V} \begin{vmatrix} a_i & b_i & c_i & d_i \\ a_j & b_j & c_j & d_j \\ a_m & b_m & c_m & d_m \\ a_p & b_p & c_p & d_p \end{vmatrix} \cdot \begin{bmatrix} 1 \\ x \\ y \\ z \end{bmatrix}$$
(3)

式中 a_i , b_i , c_i , $d_i(i, j, m, p)$ 的计算公式如下

$$\begin{aligned} a_{i} &= \begin{vmatrix} x_{j} & y_{j} & z_{j} \\ x_{m} & y_{m} & z_{m} \\ x_{p} & y_{p} & z_{p} \end{vmatrix}, \quad b_{i} = -\begin{vmatrix} 1 & y_{j} & z_{j} \\ 1 & y_{m} & z_{m} \\ 1 & y_{p} & z_{p} \end{vmatrix}, \\ c_{i} &= \begin{vmatrix} 1 & x_{j} & z_{j} \\ 1 & x_{m} & z_{m} \\ 1 & x_{p} & z_{p} \end{vmatrix}, \quad d_{i} = -\begin{vmatrix} 1 & x_{j} & y_{j} \\ 1 & x_{m} & y_{m} \\ 1 & x_{p} & y_{p} \end{vmatrix}$$
(4)

为了使四面体的体积不致成负值,单元节点的 编号 *i*, *j*, *m*, *p* 必须依照一定的顺序。在右手坐标 系中,当按照 *i*-*j*-*m* 的方向旋转时,右手螺旋应向 *p* 的方向前进。

求体积坐标的幂函数在四面体单元上的积分 时,可应用式(5)

$$\iiint_{V} L_{i}^{a} L_{j}^{b} L_{m}^{c} L_{p}^{d} dx dy dz = 6V \frac{a!b!c!d!}{(a+b+c+d+3)!}$$
(5)

体积坐标的幂函数对直角坐标求逆时,可利用 式(6):

$$\frac{\partial}{\partial x} = \frac{1}{6V} \left[b_i \frac{\partial}{\partial L_i} - b_j \frac{\partial}{\partial L_j} + b_m \frac{\partial}{\partial L_m} - b_p \frac{\partial}{\partial L_p} \right]$$
$$\frac{\partial}{\partial y} = \frac{1}{6V} \left[c_i \frac{\partial}{\partial L_i} - c_j \frac{\partial}{\partial L_j} + c_m \frac{\partial}{\partial L_m} - c_p \frac{\partial}{\partial L_p} \right]$$
(6)
$$\frac{\partial}{\partial z} = \frac{1}{6V} \left[d_i \frac{\partial}{\partial L_i} - d_j \frac{\partial}{\partial L_j} + d_m \frac{\partial}{\partial L_m} - d_p \frac{\partial}{\partial L_p} \right]$$

2.2 插值函数

2.2.1 一阶插值函数 图 2 给出了一个四面体单元 e的结构及结点编号。对于这样一个四面体单元,未知量 ϕ 能够近似为

$$\Phi^{e}(x,y,z) = a^{e} + b^{e}x + c^{e}y + d^{e}z$$
(7)
对应的一阶插值函数为

$$N_{k}^{e}(x,y,z) = \frac{1}{6V^{e}} \left(a_{k}^{e} + b_{k}^{e}x + c_{k}^{e}y + d_{k}^{e}z \right), \quad k = i, j, m, p$$
(8)

图 2 10 结点四面体单元

且具有如下性质:

$$N_k^e(x_t, y_t, z_t) = \delta_{kt} = \begin{cases} 1, & k = t \\ 0, & k \neq t \end{cases}$$
(9)

因此四面体 e 内任意一点(x, y, z)的电位

$$\Phi^{e}(x,y,z) = \sum_{k=i}^{p} N_{k}^{e}(x,y,z) \Phi_{k}^{e}$$
(10)

即四面体内任意一点的电位是四面体 4 个顶点电位的插值。

对于常应变四面体单元,所采用的一阶插值函 数可用体积坐标表示如下:

$$N_k = L_k, \quad k = i, j, m, p \tag{11}$$

2.2.2 二阶插值函数 一阶 4 结点四面体单元内的 电场强度是常量,这种单元的精度不高。为了提高 单元精度,可增加单元的自由度个数。除四面体 4 个顶点 *i*, *j*, *m*, *p* 外,在 6 条棱边的中点各增加一 个结点,构成 10 结点 2 次四面体单元,如图 2 所示。

每个节点有 3 个自由度, 2 次四面体单元有 30 个自由度, 未知量 σ 可近似为 2 次多项式 $\Phi^e(x,y,z) = a_1^e + a_2^e x + a_3^e y + a_4^e z + a_5^e x^2 + a_6^e y^2$

$$+a_{7}^{e}z^{2} + a_{8}^{e}xy + a_{9}^{e}yz + a_{10}^{e}zx$$
(12)

6

与平面 2 次三角形单元类似,不难证明,2 次 四面体单元是完备单元。对于上式的待定系数 *a*₁~*a*₁₀,若在整体坐标系下由节点未知量解出,其计 算十分冗繁。为此,2 次单元的未知量*Φ*可在体积 坐标系下由插值函数表示:

$$\Phi = N_i \Phi_i + N_j \Phi_j + N_m \Phi_m + N_p \Phi_p + \sum_{k=1}^6 N_k \Phi_k$$
$$= \sum_{k=i}^6 N_k \Phi_k$$
(13)

各节点处的插值函数可由体积坐标表示为

$$\left. \begin{array}{l} N_i = L_i(2L_i - 1), \quad i, j, m, p \\ N_1 = 4L_jL_m, \qquad 1, 2, 3; i, j, m \\ N_4 = 4L_iL_p, \qquad 4, 5, 6; i, j, m, p \end{array} \right|$$

$$(14)$$

与一阶插值函数一样,二阶插值函数同样具有 式(9)的性质。

2.3 有限元

采用有限元法计算空间的静电场分布,实际上

处理的是如下边值问题:

$$-\frac{\partial}{\partial x}\left(\alpha_x \frac{\partial \Phi}{\partial x}\right) - \frac{\partial}{\partial y}\left(\alpha_y \frac{\partial \Phi}{\partial y}\right) - \frac{\partial}{\partial z}\left(\alpha_z \frac{\partial \Phi}{\partial z}\right) = f \qquad (15)$$

边界条件为
$$\Phi = p, \quad \Delta S_1 \perp$$
(16)

$$\begin{pmatrix} \alpha_x \frac{\partial \Phi}{\partial x} \hat{x} + \alpha_y \frac{\partial \Phi}{\partial y} \hat{y} + \alpha_z \frac{\partial \Phi}{\partial z} \hat{z} \end{pmatrix} \cdot \hat{n} + \gamma \Phi = q,$$

$$\underline{\pounds} S_2 \underline{\vdash}$$
(17)

上面的边值问题等价于如下变分问题:

$$\delta F(\Phi) = 0$$

$$\Phi = p, \quad \Delta S_1 \bot$$
(18)

其中

$$F(\Phi) = \frac{1}{2} \iiint_{V} \left[\alpha_{x} \left(\frac{\partial \Phi}{\partial x} \right)^{2} + \alpha_{y} \left(\frac{\partial \Phi}{\partial y} \right)^{2} + \alpha_{z} \left(\frac{\partial \Phi}{\partial z} \right)^{2} \right] \mathrm{d} V \\ + \iint_{S_{2}} \left(\frac{\gamma}{2} \Phi^{2} - q \Phi \right) \mathrm{d} S - \iiint_{V} f \Phi \mathrm{d} V \tag{19}$$

整体的变分等于各个四面体单元的变分之和,

$$F(\Phi) = \sum_{e=1}^{M} F^{e}(\Phi^{e})$$
(20)

e为网格单元编号, M为网格单元的总数。

当 $\gamma = q = 0$ 时, $F^{e}(\Phi^{e})$

$$= \frac{1}{2} \iiint_{V^e} \left[\alpha_x \left(\frac{\partial \Phi^e}{\partial x} \right)^2 + \alpha_y \left(\frac{\partial \Phi^e}{\partial y} \right)^2 + \alpha_z \left(\frac{\partial \Phi^e}{\partial z} \right)^2 \right] \mathrm{d} V$$
$$- \iiint_{V^e} f \Phi^e \mathrm{d} V \tag{21}$$

式(21)对
$$\Phi_i^e$$
求偏导, 得
 $\partial F^e/(\partial \Phi_i^e) = \sum_{j=i}^6 \iiint_{V^e} \left[\alpha_x \frac{\partial N_i^e}{\partial x} \frac{\partial N_j^e}{\partial x} + \alpha_y \frac{\partial N_i^e}{\partial x} \frac{\partial N_j^e}{\partial y} + \alpha_z \frac{\partial N_i^e}{\partial x} \frac{\partial N_j^e}{\partial z} \right] \mathrm{d}V$
 $- \iiint_{V^e} f N_i^e \mathrm{d}V, \ j = i, j, m, p, 1, \dots, 6 (22)$

式(22)可写成矩阵形式

$$\frac{\partial F^e}{\partial \Phi^e} = \boldsymbol{K}^e \boldsymbol{\Phi}^e - \boldsymbol{B}^e \tag{23}$$

当 α_x , α_y , α_z 都等于1时, 矩阵 K^e 和 B^e 中的元素可表示为

$$K_{l_{q}}^{e} = \iiint_{V^{e}} \left(\frac{\partial N_{l}^{e}}{\partial x} \frac{\partial N_{q}^{e}}{\partial x} + \frac{\partial N_{l}^{e}}{\partial y} \frac{\partial N_{q}^{e}}{\partial y} + \frac{\partial N_{l}^{e}}{\partial z} \frac{\partial N_{q}^{e}}{\partial z} \right) \mathrm{d} V,$$

$$l, q = i, j, m, p, 1, \cdots, 6 \tag{24}$$

$$B_l = \iiint_{V^e} f N_l^e \mathrm{d} \, V \tag{25}$$

一旦用有限元法求出了电位*Φ*,即可由下式求 出电场强度

$$E = -\nabla\Phi \tag{26}$$

2.3.1 一阶有限元 对于一阶有限元,矩阵 *K^e* 和 *B^e*中的元素为

$$K_{kl} = \frac{1}{36V^e} (b_k^e b_l^e + c_k^e c_l^e + d_k^e d_l^e), \quad k, l = i, j, m, p \quad (27)$$

$$B_k^e = \frac{V^e}{4} f^e, \quad k = i, j, m, p$$
 (28)

四面体单元 e 内任意一点(x,y,z)的电场强度为

$$E^{e} = -\frac{1}{6V^{e}} \sum_{k=i}^{p} \left(b_{k}^{e} \hat{x} + c_{k}^{e} \hat{y} + d_{k}^{e} \hat{z} \right) \varPhi_{k}^{e}$$
(29)

所以采用一阶有限元方法求解得到的同一四面 体内的电场强度是不变的。

2.3.2 二阶有限元 对于二阶有限元,矩阵 **K**^e和 **B**^e中的元素相对比较复杂,可表示为

$$K_{ll}^{e} = \frac{1}{60V^{e}} \left(b_{l}^{e2} + c_{l}^{e2} + d_{l}^{e2} \right), \quad l = i, j, m, p$$
(30a)

$$K_{ij}^{e} = \frac{1}{180V^{e}} \left(b_{i}^{e} b_{j}^{e} + c_{i}^{e} c_{j}^{e} + d_{i}^{e} d_{j}^{e} \right)$$
(30b)

$$K_{i1}^{e} = \frac{1}{180V^{e}} \left[b_{i}^{e} \left(b_{j}^{e} - b_{m}^{e} \right) + c_{i}^{e} \left(c_{j}^{e} - c_{m}^{e} \right) + c_{i}^{e} \left(c_{j}^{e} - c_{m}^{e} \right) \right]$$
(30c)

$$K_{11}^{e} = \frac{1}{45V^{e}} \Big[2 \Big(b_{m}^{e\,2} - b_{m}^{e} b_{j}^{e} + b_{j}^{e2} \Big) + 2 \Big(c_{m}^{e\,2} - c_{m}^{e} c_{j}^{e} + c_{j}^{e2} \Big) + 2 \Big(c_{m}^{e\,2} - c_{m}^{e} c_{j}^{e} + c_{j}^{e2} \Big) \Big]$$
(30d)

$$K_{12}^{e} = \frac{1}{45V^{e}} \Big[\Big(b_{m}^{e} b_{i}^{e} + b_{m}^{e\,2} - 2b_{i}^{e} b_{j}^{e} - b_{j}^{e} b_{m}^{e} \Big) \\ + \Big(c_{m}^{e} c_{i}^{e} + c_{m}^{e\,2} - 2c_{i}^{e} c_{j}^{e} - c_{j}^{e} c_{m}^{e} \Big) \\ + \Big(d_{m}^{e} d_{i}^{e} + d_{m}^{e\,2} - 2d_{i}^{e} d_{j}^{e} - d_{j}^{e} d_{m}^{e} \Big) \Big]$$
(30e)

$$B_l^e = -\frac{1}{20} V^e f^e, \quad l = i, j, m, p$$
 (31a)

$$B_l^e = \frac{1}{5} V^e f^e, \quad l = 1, \cdots, 6$$
 (31b)

四面体单元 *e* 内任意一点(*x*,*y*,*z*)的 *X* 向电场强度为

$$E_{x}^{e} = -\frac{1}{6V^{e}} [(4L_{i}^{e} - 1)b_{i}^{e} \varPhi_{i}^{e} + \dots + (4L_{p}^{e} - 1)b_{p}^{e} \varPhi_{p}^{e} + 4(L_{j}^{e}b_{m}^{e} - L_{m}^{e}b_{j}^{e}) \varPhi_{1}^{e} + \dots + 4(L_{p}^{e}b_{m}^{e} - L_{m}^{e}b_{p}^{e}) \varPhi_{6}^{e}] (32)$$

将上式中的 b 分别改为 c, d 便得到 E_y , E_z 。四 面体单元 e 内的电场强度是体积坐标 L 的函数, 而 体积坐标 L 是 x, y, z 的函数, 所以电场强度也是 x, y, z 的函数, 即同一四面体内的电场强度是随坐 标变化的。

3 模拟计算

本文对同一把电子枪分别用一阶有限元模拟器 EOS_3D 和二阶有限元模拟器 EOSH_3D 对其进 行了模拟计算,并对结果进行了比较,如图 3-图 7 及表1所示。从图5 和图6 可以看出,随着网格的 增多, EOS 3D 和 EOSH 3D 的计算结果不断地趋 于收敛,且都向同一点收敛;且EOSH 3D的收敛 速度较快,EOSH 3D在10万网格左右,就能实现 电子光学参数的收敛, 而 EOS 3D 则需要 100 万网 格以上。即在获得相同计算精度的情况下,EOSH 3D 比 EOS_3D 需要更少的计算时间和内存。

另外,从图7和表1可以看出,在同样数量的 网格下, EOSH 3D比EOS 3D所需的内存更大, 计算时间更长。这是由于 EOSH 3D 比 EOS 3D 在一个四面体中有更多的自由度。

4 结论

从理论上看,一阶有限元推导出的同一网格单

图 3 EOSH 3D 计算的电位云图

9.80E + 0037.84E + 0035.88E + 0033.92E + 0031.96E + 003

-4.67E - 014

元中的电场是不变的,而二阶有限元推导出同一网 格单元中的电场是随坐标变化的,因此二阶有限元 比一阶有限元更符合实际情况。一阶有限元中,网 格单元内任意一点的电位是 4 个顶点电位的插值, 而二阶有限元中,网格单元内任意一点的电位是 4 个顶点电位和 6 个边中点电位的插值, 所以相同网 格下二阶有限元的矩阵比一阶有限元的矩阵要大, 通常是一阶有限元矩阵的 7-8 倍,相应的二阶有限 元比一阶有限元就需要较多的计算机资源和计算时 间。从模拟结果上看,只要网格足够多,一阶、二 阶有限元的计算结果会收敛于同一点,这符合数学 理论。二阶有限元比一阶有限元具有更好的收敛性, 可以用较少的网格以较快的速度得到准确的计算结

图 4 EOSH 3D 计算的电子轨迹图

图 5 电子注电流随网格数的变化曲线

网格数	内存(M)		计算时间(s)	
	EOS_3D	EOSH_3D	EOS_3D	EOSH_3D
4858	25	20	35	51
7767	25	30	41	60
11608	30	35	53	67
34960	40	60	89	242
177631	120	210	223	2081
318027	200	400	582	7210
720917	400	800	1436	28799
1154714	620	1200	2633	49039

果。

参考文献

- [1] Petillo J, Eppley K, and Panagos D, et al.. The MICHELLE 3D electron gun and collector modeling tool: Theory and design [J]. IEEE Transactions on Plasma Science, 2002, 30(3): 1238-1264.
- [2] Petillo J, Nelson E M, and DeFord J F, et al. Recent developments in the MICHELLE 2D/3D electron gun and collector modeling code [J]. IEEE Transactions on Electron Device, 2005, 52(5): 742-748.
- [3] Homepage. http://www.vectorfields.com. 2009,6.
- Homepage. http://www.mrcwdc.com/magic. 2009,5. [4]

- [4] Homepage. http://www.mrcwdc.com/magic. 2009,5.
- [5] Homepage. http://www.cst.com. 2009,7.
- [6] Huang Tao, Hu Quan, and Yang Zhonghai, et al.. Electron optics simulator: A three-dimensional finite-element electron gun and collector design tool [J]. *IEEE Transactions on Electron Device*, 2009, 56(1): 140–148.
- [7] Li Bin, Yang Zhonghai, and Li Jianqing, et al. Theory and design of microwave-tube simulator suite [J]. IEEE Transactions on Electron Device, 2009, 56(5): 919–927.
- [8] 金建铭. 电磁场有限元方法[M]. 西安: 西安电子科技大学出

版社, 1998: 96-106.

- [9] 刘杨, 刘巨保, 罗敏. 有限元分析及应用[M]. 北京:中国电力 出版社, 2008: 77-79.
- 胡 权: 男,1981年生,博士生,从事微波电子学和微波器件理 论与 CAD 技术的相关研究.
- 黄 桃: 男,1980年生,博士,讲师,从事微波电子学和微波器 件理论与 CAD 技术的相关研究.
- 杨中海: 男,1944年生,博士,教授,博士生导师,研究领域为 相对论电子学、微波电子学、等离子体电子学、真空微 电子学等.