星载 ScanSAR 干涉处理研究

赵志伟^{①2} 杨汝良^① ^①(中国科学院电子学研究所 北京 100190) ²(中国科学院研究生院 北京 100039)

摘 要: 星载 ScanSAR 干涉测量是一种宽测绘带的三维测高模式。该文结合 ScanSAR 工作原理,研究该模式干 涉信号的频谱特点及 ScanSAR 干涉处理中特有的方位扫描同步;分析 ENVISAT 卫星 ASAR Wide Swath 模式单 视复图像数据的特点,提出 ScanSAR 干涉数据处理的具体实现方案,并通过处理真实数据验证该方法的有效性。 关键词:合成孔径雷达;ScanSAR;干涉;方位拼接 中图分类号:TN957.52 文献标识码:A 文章编号:1009-5896(2008)08-1954-05

Study of Space-borne ScanSAR Interferometry Processing

Zhao Zhi-wei⁰² Yang Ru-liang⁰

⁽¹⁾(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China) ⁽²⁾(Graduate University of Chinese Academy of Sciences, Beijing 100039, China)

Abstract: Interferometry with Space-borne ScanSAR is a wide swath elevation measurement technique. The properties of ScanSAR interferometric signal spectrum and Azimuth Scan Pattern Synchronization are discussed combined with the principle of ScanSAR mode. The characteristics of ENVISAT/ASAR Wide Swath SLC data are analyzed. A novel data processing method for ScanSAR interferometry is proposed based on the analysis results,. The method is validated with real data experiment.

Key words: Synthetic Aperture Radar (SAR); ScanSAR; Interferometry; Azimuth mosaic

1 引言

星载 ScanSAR 干涉是将 ScanSAR 模式的宽测绘带特性 与干涉 SAR 的高程测量能力相结合的三维测高模式。 ScanSAR 模式利用波束在方位向照射的间隙进行距离向的 扫描,是一种宽测绘带的 SAR 成像模式^[1,2]。SAR 干涉测量 利用 SAR 图像的相位信息重建被照射区域的数字高程模型 (DEM)、测量地表的变形或者观测植被的变化^[3]。"利用 ScanSAR 实现宽测绘带干涉测量"的概念在 1995 年被首次 提出^[4],随后其可行性通过仿真数据得到了验证^[5]。2000 年 的 SRTM (Shuttle Radar Topography Mission)任务中, 航 天飞机载荷的双天线 SAR 系统利用 ScanSAR 技术在 11 天 内获得了全球 80%面积的测量信息^[6]。更多的 ScanSAR 干 涉是利用单天线重复轨道飞行实现的。基于 RADARSAT-1 和 ASAR(Advanced SAR)的 ScanSAR 干涉都得到了实现, 并在多种领域得到了应用^[7-10]。欧洲空间局为用户提供的 ASAR Wide Swath 模式单视复图像(ASAR WSS)数据是目 前唯一公开提供的重复轨道 ScanSAR 干涉数据,研究该数 据的处理方法具有一定代表性。目前国内在该方面的研究尚 处于起步阶段,基于真实数据的 ScanSAR 干涉处理方面的 科研工作及成果鲜有报道。

2 ScanSAR 干涉信号理论

2.1 ScanSAR 工作原理

图 1 为三子带 ScanSAR 模式的示意图。在 ScanSAR 模 式下, 雷达在每个波束指向上都发射一系列的脉冲, 并接收 相应的回波, 然后改变天线在距离向的指向。如此跳转 N 次, 就形成 N 个子带(一般 N 在 2~5 之间), 组合测绘带的宽度 为同条件下条带模式的测绘宽度的 N 倍。在一个子带内连续 照射的时间称为驻留时间, 记做 T_B; 驻留时间内获得的数 据称为 burst; 天线在各子带间循环一次的时间长度称为回 归时间, 记做 T_p。子带内波束的驻留时间短于合成孔径时间, 导致方位向分辨率的降低, 但这并不影响图像的场景范围。

在 ScanSAR 数据处理过程中,通常以 burst 为单位进行 处理。同一子带内的所有 burst 处理结束后,需要通过方位 向的拼接获得连续的图像。方位拼接的过程也是方位向多视 处理的过程。

各 burst 单独处理时, 第 n 个 burst 内的点目标单位冲

本文內容安排如下:第2部分对 ScanSAR 干涉作理论 分析,包括 ScanSAR 工作原理、其干涉信号的频谱特性和 ScanSAR 干涉特有的方位扫描同步;第3部分分析 ASAR WSS 数据的格式和特点;第4部分提出适合 ASAR WSS 数 据的干涉处理流程,并将处理结果与利用常规干涉 SAR 处 理流程得到的结果相对比;第5部分是结论。

²⁰⁰⁶⁻¹²⁻²⁸ 收到, 2007-06-08 改回

图 1 三子带 ScanSAR 工作模式示意图

击响应可以表示为^[8]

 $h_n(t,t_0) = \operatorname{sinc}(W_B(t-t_0)) \exp(j2\pi f_R(nT_p - t_0)(t-t_0))$ (1) t_0 表示目标相对于零多普勒位置的时间偏移, t 为方位时间。 这里忽略了天线方向图的加权。ScanSAR 的单 burst 图像可 表示为

$$u_n(t) = \int \mathrm{d}t_0 h_n(t, t_0) \sigma(t_0) \tag{2}$$

 $\sigma(t_0)$ 表示复反射函数。

ScanSAR的 burst 图像的方位向信号多普勒带宽可表示为

$$W_B = \left| f_B \right| T_B \tag{3}$$

 f_R 为多普勒调频斜率。由于 T_B 小于合成孔径时间 T_i , Scan SAR 图像的多普勒带宽也小于同条件下条带模式图像的多普勒带宽($W_{\text{strip}} = |f_R| \cdot T_i$),且不同位置的burst对应于全带宽的不同区域。

2.2 ScanSAR 干涉信号的频谱特点。

若单 burst 复图像分别为 $u_{1,n}$ 和 $u_{2,n}$, 则一个 burst 干涉 图可以表示为

$$i_n(t) = u_{1,n}(t)u_{2,n}^*(t)$$
(4)

burst 干涉图的自相关函数按如下方法计算:

$$R_{ii,n}(\tau,t) = E\left\{i_n^*(t)i_n(t+\tau)\right\}$$
(5)

该干涉图的功率谱密度可以看作是该图像自相关函数 的傅里叶变换,即

$$S_{ii,n}(t,f) = \operatorname{FT}_{\tau} \left\{ R_{ii,n}(\tau,t) \right\}$$
(6)

假设每个干涉信号通道中分布目标的复反射函数是一 个零均值、单位方差的复高斯随机过程,且两通道内复反射 函数复合如下关系:

$$\sigma_{1}(t) = \sqrt{1 - \gamma_{T}}a(t) + \sqrt{\gamma_{T}}c(t)$$

$$\sigma_{2}(t) = \left(\sqrt{1 - \gamma_{T}}b(t) + \sqrt{\gamma_{T}}c(t)\right)\exp(-j2\pi f_{\phi}t)$$
(7)

a(t)、b(t)、c(t)为互相独立的零均值周期复高斯过程, γ_T 为时间相干系数, f_{ϕ} 表示方位频率偏移。根据式(7)的假设,将式(2)、式(3)、式(4)代入式(5)和式(6),得到 ScanSAR 的burst 干涉图功率谱密度的表达式:

$$S_{ii,B}(f) = W_B \operatorname{tri}\left(\frac{f}{W_B}\right) + \left|W_B \gamma_T \operatorname{tri}\left(\frac{f_{\phi}}{W_B}\right)\right|^2 \delta(f - f_{\phi}) \quad (8)$$

利用同样的方法,可以得到条带模式干涉图的功率谱密度表

达式:

$$S_{ii,\text{strip}}(f) = W_{\text{strip}} \text{tri}\left(\frac{f}{W_{\text{strip}}}\right) + \left|W_{\text{strip}}\gamma_T \text{tri}\left(\frac{f_{\phi}}{W_{\text{strip}}}\right)\right|^2 \delta(f - f_{\phi})$$
(9)

对比式(8)和式(9),可以看出,ScanSAR 的 burst 干涉 图与条带模式干涉图具有相似的功率谱密度,区别在于各自 分布受各自的多普勒带宽限制。所以,可以利用与条带 SAR 干涉处理相似的方法处理 ScanSAR 复数据,但针对其多普 勒带宽的改变需要做相应调整。

2.3 方位扫描同步

重复轨道的 ScanSAR 干涉过程中,主、辅图像中对应 burst 所覆盖的区域并不一定完全重合。这时同一个 burst 内方位向可用于干涉的像素数量会相应减少,干涉图的方位 向频谱宽度也会变窄,最终会造成干涉图方位分辨率的下 降。如果干涉图的方位分辨率过低,则表明这一对数据不适 合做干涉处理。主、辅图像中对应 burst 在方位向的重叠被 称作"方位扫描同步"(Azimuth Scan Pattern Synchronization, ASPS),足够的方位扫描同步比例是 ScanSAR 干涉的 必要前提^[5,9]。可以利用最大互相关法估计方位扫描同步的偏 移量,具体方法为:分别将主、辅图像中对应的几个连续 burst 复图像进行方位拼接,在拼接后的主、辅复图像中取 出相同范围的图像块,计算互相关函数,估计准则为

$$k = \arg\max_{k} \left| \text{DFT}\left\{ u_1 \left[m + k \right] u_2^* \left[m \right] \right\} \right|$$
(10)

图 2 为本实验所用数据的方位扫描同步估计结果。在所 测区域,方位扫描偏移为 2 个像素,由于每 burst 共有 48 个像素,2 像素的偏移相当于同步比例为 95.8%。

图 2 方位扫描同步估计结果

3 ASAR WSS 数据特点分析

ASAR 是 ENVISAT 卫星上的合成孔径雷达有效载荷, 它的 Wide Swath 模式采用 ScanSAR 技术,成像幅宽 405 公里。ASAR WSS 数据内包含辅助数据和复图像数据。复 图像数据是按照子带的顺序存储的,在各子带内数据以距离 向数据线的形式存储^[11]。两块数据的基本参数如表1所示。

表1 实验数据基本参数

数据名称		ASA_WSS 08147_0003	ASA_WSS 10151_0004
获取时间		2003-09-21	2004-02-08
子带数		5	
burst 内数据线数		48	
方位视数		3	
方位向采样时间		$1.1985\!\times\!10^{-\!2}\!\mathrm{s}$	$1.1982\! imes\!10^{-2} m s$
方位向像素距离		$80\mathrm{m}$	$80\mathrm{m}$
距离向采样点数		6399	6379
距离向像素距离		$7.8\mathrm{m}$	$7.8\mathrm{m}$
被处理数据来源		第1子带	第1子带
处理长度	方位向	16 burst	
	距离向	1000 点	
基线长度		$130\mathrm{m}$	
平均 ASPS 比例		$\thickapprox96\%$	

经分析,ASAR WSSO数据相比普通干涉 SAR 复图像数据具有以下特点:

(1)每条数据线的开头都注明了该数据线对应的零多普 勒时间,即零多普勒位置对应的方位时间。它是方位向拼接 的主要依据。同一子带内零多普勒时间之间的变化趋势如图 3 所示。该图中横坐标表示方位向像在数据块中的位置,纵 坐标表示多普勒时间的值或者变化趋势。图 3(a)为零多普勒 时间的绝对大小变化趋势,由图可知相邻 burst 之间都有过 2/3 的数据对应的零多普勒时间是重叠的,即方向可以进行 三视处理。图 3(b)表示相邻数据线零多普勒时间的差异,可 以看见,在某些 burst 的第一条数据线会出现零多普勒时间 的"不规则点"出现不规则点的区域放大后如图 3(c)所示。 "不规则点"的出现将影响方位向的拼接和方位扫描同步, 进而影响到干涉图的方位向频谱。

(2)受扫描特性影响, ScanSAR 干涉复图像同样具有方 位向的不连续性。图 4 为第 1 子带内连续 16 个 burst 数据拼 接前后的幅度图。可以看出方位向的数据是不连续的,而且 各 burst 内都有无图像区域,方位拼接时需要将无图像区域 删除。

(3) 由于已经进行了方位向方向图校正,消除了 ScanSAR的"扇贝效应",在一定程度上降低了处理难度。

4 ScanSAR 干涉数据处理流程

ScanSAR 干涉数据处理的具体实现方法也包含配准、插 值重采样、共轭相乘、去平地效应、降噪处理等步骤。文献 [10]主要介绍了利用 ASAR WSS 数据进行差分干涉的处理 方法,本文结合数据特点提出利用该数据直接干涉的处理流 程。

ScanSAR 干涉处理的方案分为两类^[7],可以分别概括 为:"先干涉再拼接"和"先拼接再干涉"。第一种符合 ScanSAR 的特点,以 burst 为单位进行处理,需要的存储空 间较小,但对于 ASAR WSS 数据,每 burst 只有 48 条距离 向数据线, 若除去无图像区, 实际仅有 30 条数据线。这不 利于一些统计计算(如方位频谱估计、配准中的窗口搜索等), 本文不作考虑; 第二种流程可直接利用传统的条带 SAR 干 涉处理系统进行干涉处理,却需要较大的存储空间和运算 量。本文提出一种可概括为"拼接-分解-再拼接"的处理方 案: 先将主、辅图像进行方位向拼接,利用足够多的方位向 数据获得准确的配准参数用于多项式拟合;然后对拼接前的 辅图像 burst 序列进行插值、重采样,得到新的辅图像序列; 通过共轭相乘得到 burst 序列干涉图后,再利用多 burst 干 涉图的联合处理,估计方位向数据的完整频谱,消除平地效 应的影响; 降噪处理后, 得到 burst 序列干涉条纹图; 最后 通过方位拼接得到完整的干涉条纹图。

零多普勒时间变化的不规则点会造成同一子带内存在 不同 ASPS 比例,导致 burst 干涉图的方位频谱范围发生变 化。此时若直接利用频谱搬移法消除平地效应会出现误差, 如图 5(a) 右半部分显然没有完全消除平地效应。针对该问题, 本方案提出的解决方法是在"不规则点"两侧分别消除平地 效应,再进行方位拼接。图 5(b)为利用该方法消除平地效应 得到的干涉条纹图。同时这也说明零多普勒时间是 ASAR WSS 复图像干涉处理过程中一个重要的参数。

根据前面的分析,将 ScanSAR 干涉处理流程表示为图 6 的形式。其中虚线表示辅助流程,实线表示主流程。配准方 法选用最大频谱法,消除平地效应方法为频谱搬移法^[12]。

图 7 是按照图 6 的流程处理的 ASAR WSS 数据的结果, 图 8 则是利用前面所说的第二种处理流程得到的结果(即"先

图 5 零多普勒时间不规则点附则近消除平地效应结果

图 6 ScanSAR 干涉处理流程框图

拼接后干涉"的方法)。图7、图8的(a)图为干涉条纹图。(b) 图为残差点分布图,其中黑、白点分别代表正、负残差点。利 用残差点的数量和分布情况可以比较两幅干涉图的质量^[12]。处 理过程中,都进行了距离向五视处理和方位向三视处理,降 低相位噪声的方法选用窗口长度为5×5的均值滤波。可以 看出利用本文提供的方法得到的条纹图更清晰的。从残差点 的数量和分布来看,利用本文所提供的处理方法得到的干涉 条纹图具有较少的残差点,且只分布在噪声较大的区域,将 有利于随后的相位解缠处理;而直接处理得到结果条纹清晰 度差,残差点较多,且分布广泛,不利于相位解缠处理。

图 7 按图 6 流程处理的结果

图 8 "先拼接后干涉"的处理结果

5 结论

ScanSAR 干涉测量利用 ScanSAR 的宽测绘特性,一方 面可以实现单次大面积的高度测量,另一方面也可以增加对 指定地区的重复访问频率,降低时间去相干的影响,具有广 泛的应用前景。ASAR WSS 数据是目前唯一公开提供的 ScanSAR 单视复数据,基于该数据的研究具有一定代表性。 本文通过理论分析,得出 ScanSAR 干涉处理可以通过对常 规 SAR 干涉处理方法加以改进来实现的结论;通过分析 ASAR WSS 数据的特点,结合常规的 SAR 干涉处理方法提 出了合适的 ScanSAR 干涉数据处理的流程;最后的实际数 据实验中,通过与另一种已有的 ScanSAR 干涉处理流程的 处理结果对比,证明本文方法得到的结果更有利于相位解缠 处理。

致谢 作者感谢欧洲空间局(ESA)ERSIN 处理中心提供的 ASAR WSS 数据,同时感谢德国宇航中心(DLR)提供的重要文 献。

参考文献

- Moore R K, Claassen J P, and Lin Y H. Scanning spaceborne synthetic aperture radar with integrated radiometer. *IEEE Trans. on Aerosp. Eletron. Syst.*, 1981, 17(3): 410–420.
- [2] Tomiyasu K. Conceptual performance of a satellite borne, wide swath synthetic aperture radar. *IEEE Trans. on Geosci. Remote Sensing*, 1981, GE-19(2): 108–116.
- [3] Zebker H A and Goldstein R M. Topographic mapping from interferometric synthetic aperture radar observations. *Journal of Geophysical Research*, 1986, 91(B5): 4993–4999.
- [4] Monti-Guarnieri A and Prati C. Interferometry with ScanSAR. IGARSS'95, Firenze, Italy, 1995: 550–552.
- [5] Monti-Guarnieri A and Prati C. ScanSAR focusing and interferometry. *IEEE Trans. on Geosci. Remote Sensing*, 1996, 34(4): 1029–1038.
- [6] Hensley S, Rosen P, and Gurrola E. Topographic map generation from the Shuttle Radar Topography Mission

C-band SCANSAR interferometry. SPIE, 2000, Vol. 4152: 179–189.

- [7] Holzner J and Bamler R. Burst-mode and ScanSAR interferometry. *IEEE Trans. on Geosci. Remote Sensing*, 2002, 40(9): 1917–1937.
- [8] Holzner J. Signal theory and processing for burst-mode and ScanSAR interferometry. Forschungsbericht 2004-06, DLR, Oberpfaffenhofen, Germany.
- Guccione P. Interferometry with ENVISAT wide swath ScanSAR data. *IEEE Geosci. Remote Sensing Letters*, 2006, 3(3): 377–381.
- [10] Small D, Meier E, and Jonsson S, et al.. ScanSAR InSAR

processing of ASAR Wide Swath SLC(WSS) products. FRINGE 2005 Workshop presentation, ESA, ERSIN, Frascati, Italy, 2005.

- [11] European Space Agency, Envisat ASAR Products Handbook. issue2.1, 2006.
- [12] 陶鹍.干涉合成孔径雷达数据处理及仿真研究.[博士论文], 中国科学院电子学研究所, 2003.
- 赵志伟: 男,1979年生,博士生,研究方向为星载合成孔径雷达 信号处理与系统仿真.
- 杨汝良: 男,1943年生,研究员,博士生导师,研究方向为机载、 星载合成孔径雷达系统总体设计.