基于分块 Contourlet 变换的图像独立分量分析方法

张瑾 方勇

(上海大学通信与信息工程学院 上海 200072)

摘 要: 该文利用 Contourlet 变换良好的稀疏特性和能准确地捕获图像中的边缘信息的特点,提出了一种基于分 块 Contourlet 变换的独立分量分析方法,并应用到图像分离中。实验结果表明,该方法在分离效果和处理时间上 都有一定的优越性。

关键词:图像分离;Contourlet变换;独立分量分析 中图分类号:TN911.7 **文献标识码:**A

文章编号: 1009-5896(2007)08-1813-04

An Independent Component Analysis Algorithm Based on Block-wise Contourlet Transform

Zhang Jin Fang Yong

(School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China)

Abstract: Based on the characteristics of good sparsity and capturing effectively the smooth contours in natural images for Contourlet transform, a new independent component analysis algorithm is proposed by using the block-wise Contourlet transform in this paper. Experimental results show that the proposed algorithm is able to achieve a better performance in image separation.

Key words: Image separation; Contourlet transform; Independent component analysis

1 引言

盲信号分离就是在源信号和混合方式未知情况下,只利 用混合后的观测数据求取源信号。近十几年来,盲信号分离 已成为信号处理学界及神经网络学界的研究热点课题,无论 在无线数据通信、语音或者是图像、医学等领域都有着广泛 的应用前景。

稀疏独立分量分析(Sparse Independent Component Analysis, SPICA)是继法国的Herault和Jutten提出独立分量 分析(ICA)^[1]以来,近期发展起来的一种典型盲信号分离方 法,其主要目的就是利用混合信号的稀疏性来确定一个线性 变换矩阵,使得变换后的输出分量尽可能统计上独立。然而, SPICA进行盲信号分离的效果与输入混合数据稀疏性密切 相关,即若输入混合数据越稀疏,通过SPICA方法求得混合 矩阵越精确,所需时间也越少^[2]。但对于一般自然图像和信 号不具有稀疏特性,SPICA的应用因此具有一定的局限性。 在文献[3]中,Alexander指出小波变换的高频子图像具有较 好的稀疏性,提出了一种基于小波包的独立分量分析方法 (WPSICA),能够较好地实现对传输与反射图像的盲分离。

然而小波变换在表示图像结构的直线/曲线奇异性不是 最优的,不能准确地捕获自然图像中占很大比例的边缘信

2005-11-23 收到, 2006-08-21 改回

国家自然科学基金(60472103),上海市优秀学科带头人基金(05XP14 027)和上海市重点学科项目(T0102)资助课题

息。针对小波变换的这一缺陷,本文探讨了多尺度几何分析 方法——Contourlet变换,由于其具有获得更好稀疏性的特 点,本文提出了基于分块Contourlet变换的独立分量分析算 法,并应用到混合图像的盲分离中。因为大多数自然图像中 存在某些区域,它的边界或纹理的系数可以使得星座图更为 稀疏^[3],因此本文将图像分块后进行处理,大大降低了算法 的运算复杂度。实验结果显示,此方法在分离精度和收敛速 度方面,都有其显著的优越性。

2 Contourlet 变换的稀疏性

2002 年,Do和Vetterli提出了Contourlet变换^[4],也称 塔型方向滤波器组,它是一种多分辨的、局域的、方向的图 像二维表示方法。

Contourlet 变换由用于多尺度分析的拉普拉斯塔式LP (Laplacian Pyramid)变换和用于方向分析的方向滤波器组 两部分组成(如图1(a))。它对每个尺度允许不同数目的方向 分解,因此是一种灵活多分辨的和对图像方向的分解。其变 换步骤为:首先由LP变换对图像进行多尺度分解以"捕获" 奇异点,生成一个原始图像的低通采样信号和一个原始图像 与预测图像之差形成的带通图像。其中LP分解后的带通图像 由方向滤波器组(Directional Filter Bank, DFB)进行2^d 方 向分解(其中 ld 可自行定义以获得期望的方向分解数,但一 般取 ld 层方向滤波器进行2^{dd} 方向分解),将频域分解成2^{dd} 个呈锲型(wedge shape)的子带,使得分布在同方向上的奇异 点合成为一个系数。同时对低频信息进行迭代运算。图1(b)

为Contourlet变换示意图,变换的最终结果是用类似于轮廓段(contour segment)的基结构来逼近原图像。

需要注意的是方向滤波器并不适合于处理图像的低频 部分,不经过滤波直接应用方向滤波器会导致低频分量的 "泄漏",影响到高频分量的方向性。因此,在应用方向滤 波器前,要先将图像的低频部分滤除。此外,LP分解和DFB 都具有完全重构性,也就是说Contourlet变换可以实现完全 重构。

Contourlet变换不但继承了小波变换的多分辨率分析思 想,还有着比小波变换更丰富的方向分量,能更稀疏地表示 原图像。这是由于:Contourlet 基的支撑区间具有随尺度而 长宽比变化的"长条形"结构(如图2(a)),具有良好的各向异 性,能沿着图像轮廓边缘用最少的系数来逼近奇异曲线,实 现用"稀疏"表示原图像。小波变换同样具有多分辨率特性, 而用二维可分离小波来逼近图像中奇异曲线的过程中,在不 同分辨率下,采用先对行做一次一维小波变换,再对列做一 次一维小波变换,扩展开来,其基函数的支撑区域由区间扩 展为正方形,基函数形状的方向性较差,且当尺度不断变细 时,非零小波系数的数目以指数形式增长,最终则不能用"稀 疏"表示原图像。

(a) Contourlet 变换逼迫奇异曲线

(b) 小波变换逼迫奇异曲线

图2 Contourlet变换与小波变换逼近奇异曲线过程

另外,本文将4幅图像Elaine,Boat,Lena,Goldhill的 Contourlet变换和小波变换后子图像的直方图进行比较(如 图3所示),其中小波变换采用Daubechies小波db1,横坐标 为经过转化的变换系数,纵坐标为系数出现的频率数。可以 看到,Contourlet变换系数与小波变换系数均处于零周围, 但Contourlet变换系数的方差更小,即非零系数更少。因此, 从稀疏角度来说,Contourlet变换比小波变换更具有优越性, 能更稀疏的表示原图像。

3 基于分块 Contourlet 变换的独立分量分析

2001年,Zibulevsky等^[5,6]指出:利用信号的稀疏性可以 提高现有ICA算法的准确度与计算效率。且SPICA相关算法 ^[5,7,8]的信号分离效果在很大程度上都取决于混合图像星座图 的质量。星座图是将混合矢量在二维平面上用一个点来表 示,点的坐标即为混合矢量的分量。它描述的是混合矢量的 分布情况。星座图的主轴越清晰,即混合后信号越稀疏,则 获得的混合矩阵越准确,分离效果越好^[2]。小波变换是一种 线性变换,经过小波变换后的高频子图像分布近似为拉普拉 斯分布,Alexander^[3]则利用小波变换较好的稀疏性提出了一 种基于小波包的独立分量分析方法(WPSICA)。但研究结果 表明,小波变换在分析点状瞬态特征的奇异性时是最优的,不能 准确地捕获自然图像中占很大比例的边缘信息。

由对 Contourlet 变换的分析可知, Contourlet 变换比小 波变换稀疏性更好,且它是一种线性变换,所以本文考虑将 Contourlet 变换与独立分量分析方法相结合,并应用到图像 分离中。由于大多数自然图像中存在某些区域,它的边界或 纹理的系数可以使得星座图更为稀疏。也就是说,将图像进 行分块处理,分块后某些图像块的星座图比其他图像块的星 座图方向性更好,获得的混合矩阵也更精确。由此,为了减 少数据量,提高分离效果,本文提出一种基于分块 Contourlet 变换的独立分量分析算法(Block-wise Contourlet Transform ICA, BCTICA)。考虑到将图像分块容易产生分块效应,这 里采用部分重叠的分块算法,且分离效果与重叠区域大小有 关。

采用本文提出的基于分块 Contourlet 变换的独立分量 分析方法进行混合图像分离的具体步骤如下:

(1)将 M幅混合图像分别进行 Contourlet 变换得到 M幅低频图像和若干幅高频子图像,子图像数目取决于 LP 分解层数及每层分解的方向数;

(2)将 M 幅低频图像滤除,并对所有高频子图像进行 2×

2分块处理,边缘重叠区域为 D,具体重叠区域大小的选取 在后面仿真实验中进行讨论;

(3)运用聚类算法选择星座图中点到主轴距离和最小的, 也就是稀疏性最好的某级某一方向某块区域的 M 幅高频子 图像,将其按行堆叠成矩阵形式 x,再对 x 进行最大负熵 ICA 分解,得到分离矩阵 \widetilde{W} 和行向量相互独立的分离图像 矩阵 \tilde{y} ;

(4)为获得时域分离图像矩阵 y,将分离矩阵 \widetilde{W} 乘以时 域混合图像矩阵 x, 即 $y = \widetilde{W}x$ 。再由y的每一行都还原成 二维的图像形式就可以得到 M 幅独立的源图像。

本文采用2×2分块是由于:随着分块数不断增大,每块 所含样本点减少,统计特性趋于不明显,会影响分离效果, 因此取2×2分块。

4 实验结果与分析

为了验证本文提出的基于分块 Contourlet 变换的独立 分量分析方法的有效性,我们进行了2组仿真实验,并分别 与基于小波变换的独立分量分析方法的性能进行比较,其中 Contourlet 变换采用一层塔式分解, 32 级方向分量分解, 图 像分块采用2×2分块。

本文仿真实验中的混合图像是由两维的原图像按行首 尾相接的方式转化成一维的行向量,再将由这些行向量组成 的时域混合图像矩阵 x 和随机生成的混合矩阵进行线性混 合获得的。

仿真1 取图像 elaine 和 zelda(512×512),并针对不同 大小的分块重叠区域进行实验。实验中, BCTICA 与 WPSICA 方法所需的混合矩阵 A 是相同的, 且均为随机生 成。

为了衡量 ICA 分离的性能,本文采用性能指标峰值信噪 比(Peak Signal-to-Noise Ratio, PSNR), 单位为分贝(dB), 计算公式如下:

$$PSNR = \frac{XY \max_{x,y} p_{x,y}^2}{\sum_{x,y} (p_{x,y} - \overline{p}_{x,y})^2}$$
(2)

式中 $p_{x,y}$, $\bar{p}_{x,y}$ 分别表示原图和含噪图像中坐标为(x,y)的一 个像素点, X,Y分别表示行和列的像素数目。峰值信噪比 越高,表明分离效果越好。本实验在不同分块重叠区域情况 下进行比较。

(1)分块重叠区域 D1 取较小值(Mp, Np 为子图像行数与 列数), 混合矩阵随机生成为

	(-0.80509)	0.21932
A1 =	0.52874	-0.9219

将两幅图像按混合矩阵 A1 进行混合,得到实验所需要分离 的混合图像,再分别用 BCTICA 与 WPSICA 进行分离,其 中分别对不同的小波变换(db1~db4)进行了测试,分离性能 如表1所示,当小波变换选用 Daubechies 小波 db1,分离结 果如图4所示。

表1 重叠区域为 D1 时两种分离方法效果比较

	PSNR	t (dB)	迭代	处理时间
	Elaine	Zelda	步骤	(s)
BCTICA	97.7876	87.363	65	16.0150
WPSICA(db1)	78.5746	68.48	67	35.1570
WPSICA(db2)	42.5908	62.353	70	38.9220
WPSICA(db3)	55.6464	62.617	66	37.9840
WPSICA(db4)	47.9835	64.8479	67	39.4220

Mixed image1 300 100500

100

200

300

400

500

300 500 PSNR=87.363dB

PSNR=97.7876dB

300 500 100 300 PSNR=78.5746dB

图 4 分离效果示意图 (2)分块重叠区域 D2 取较大值, 混合矩阵随机生成为 2.1363 - 1.4095

A2 =-0.25762 1.7701

类似地,两种方法分离效果如表2所示,其中小波变换 选用 Daubechies 小波 db1。

表 2 重叠区域为 D2 时两种分离方法效果比较

	PSNR (dB)		迭代	处理时间
	Elaine	Zelda	步骤	(\mathbf{s})
WPSICA	68.6018	67.3974	75	50.5940
BCTICA	76.5891	75.7172	69	21.6720

可以看到,无论从分离图像的峰值信噪比 PSNR,还是 视觉效果来看,本文提出的方法都明显优于 WPSICA 方法。 从运行速度来说,BCTICA 算法所用的时间比 WPSICA 算 法也少得多。值得注意的是, BCTICA 方法对一种现象尤为 有效,即混合信号稀疏性较差,星座图类似于一宽平行四边 形时的情况。实验中当随机矩阵取 时,混合信号稀疏性较差, A3 =-2.2023 -0.51864

WPSICA 几乎不能进行分离,分离失败,但 BCTICA 仍可 获得较令人满意的分离效果。分离效果对比如图 5 所示。这 些均证明本文提出的方法在图像分离上是有效的。

图像对	八百团份	PSNR	PSNR (dB)		处理时间(s)	
	万 丙含像	WPSICA	BCTICA	WPSICA	BCTICA	
(baboon,lax)	baboon	56.2362	97.1099	38.4150	34.2690	
	lax	53.9883	60.5966			
(barbara,plane)	barara	55.2202	66.9405	84.9620	25.3270	
	plane	64.7947	61.8709			
(lake,boat)	lake	47.4681	43.5441	31.1850	14.9010	
	boat	39.7156	63.3413			
(baboon,lake)	baboon	51.1782	57.3015	40.1470	17 2550	
	lake	61.478	105.9135		11.2550	
(lax, barbara)	lax	52.5499	62.2239	36.2820	24 1250	
	barbara	60.3173	67.0579		24.1200	

表 3 不同图像对分离效果比较

100

500

500

300

PSNR=64.0287dB

500

100

With BCTICA

500

Mixed image2 100 200 300 400

300

100 300 500100 300 500500 100 300 PSNR=18.7419dB PSNR=50.916dB

图 5 BCTICA 与 WPSICA 分离特殊情况

另外, BTICA 算法的分离效果与重叠区域大小 D 的选 择有关,不同重叠区域会有不同分离效果。经过多次实验发 现,随着重叠区域 D 的增大,效果趋于稳定。当 D 较小, 易获得高峰值信噪比的分离效果,因此对于一般图像,要获 得较为稳定的分离效果, 块大小取 B = 4, $D = \left(\frac{Mp}{4}, \frac{Np}{4}\right)$ 左 右较为合适。但若分块后的图像仍然不够稀疏,也会出现较 少比例性能不如 WPSICA 的情况。

仿真 2 为了进一步说明 BCTICA 方法的优越性。下面 就一组图像来进行实验。实验结果如表3所示。实验表明本 文提出的 BCTICA 较 WPSICA 在分离效果与处理时间上都 有一定的优越性,改善了分离效果,缩短了处理时间。

结束语 5

本文提出了一种基于分块 Contourlet 变换的独立分量 分析方法 BCTICA,并应用于图像分离中。与基于小波变换 的独立分量分析方法 WPSICA 方法相比较, BCTICA 更能 准确地捕获自然图像中占很大比例的边缘信息,使得混合信 号具有更好的稀疏性,从而更有效地实现图像分离。实验结 果表明,该方法较 WPSICA 在分离效果与处理时间上都有

一定的优越性。

参考文献

- Jutten C and Herault J. Blind separation of sources, part I: [1] An adaptive algorithm based on neuromimetic architecture . Signal Processing, 1991, 24(1): 1-10.
- Bronstein A M and Bronstein M M, et al.. Blind separation of [2] reflections using sparse ICA. 4th International Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, 2003, 4: 227-232.
- Bronstein A M and Bronstein M M, et al.. Sparse ICA for [3] blind separation of transmitted and reflected images. International Journal of Imaging Science and Technology, 2005, 15(1): 84-91.
- Do M N and Vetterli M. Contourlets: A new directional [4] multiresolution image representation. Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers . 3-6 Nov. 2002, Vol. 1: 497-501.
- Zibulevsky M and Pearlmutter B A. Blind source separation [5] by sparse decomposition. Neural Comp., 2001, 13(4): 863-882
- [6]Zibulevsky M, Kisilev P, Zeevi Y Y, and Pearlmutter B A. Blind source separation via multimode sparse representation. In NIPS-2001, Morgan Kaufmann, San Mateo, CA, 2001: 185-191.
- [7] Kisilev P, Zibulevsky M, Zeevi Y Y, and Pearlmutter B A. Multiresolution framework for blind source separation. CCIT Report#317, Technion Press, 2000.
- Lennon M, Mercier G, Mouchot M C, and Hubert-Moy L. [8] Spectral unmixing of hyperspectral images with the Independent Components Analysis and wavelet packets. IGARSS, Sydney, NSW. 9-13 July 2001, Vol. 6: 2896-2898.
- 张 瑾: 女,1981年生,硕士,研究方向为盲信号处理、图像认 证.
- 方 勇: 男,1964年生,教授,博士生导师,研究方向为盲信号 处理、通信信号处理和智能信息系统.