基于瑞利多径衰落信道的信号包络频谱感知

周义明* 李英顺 田小平

(北京石油化工学院信息工程学院 北京 102600)

Spectrum Sensing Based on Signal Envelope of Rayleigh Multi-path Fading Channels

ZHOU Yiming LI Yingshun TIAN Xiaoping

(Information Engineering College, Beijing Institute of Petrochemical Technology, Beijing 102600, China)

Abstract: In order to improve the correlation between signal samplings and reduce the influence of noise on sensing performance, a spectrum sensing algorithm based on signal envelope autocorrelation matrix is proposed in the paper. Firstly, the sampling signals are intercepted at equal intervals, the signal autocorrelations are calculated by means of the adjacent interval samples, and an approximate autocorrelation matrix is constructed. Secondly, the statistic is constructed according to the properties of the sub-diagonal elements of the matrix. The detection probability distribution function and the false alarm probability distribution function of the statistic are calculated respectively. The detection performances of the spectrum sensing algorithm are analyzed. The algorithm optimizes the calculation of signal correlation and reduces the impact of noise on detection performance. Finally, the effects of different parameters on detection probability and false alarm probability are verified by simulation, and some measures are proposed to improve detection performance.

 ${\bf Key \ words: \ Spectrum \ sensing; \ Rayleigh \ channels; \ Signal \ envelope; \ Correlation \ matrix}$

1 引言

随着无线通信技术的发展,无线设备的接入量 越来越多,使得可用无线频谱成为极度稀缺的资 源。然而一些授权频段由于使用率较低(电视频 段),导致频谱的极大浪费,同时大量新开发的通 信设备由于无授权频段可用,只能拥挤在非授权频 段(例如,ISM),这一现象严重阻碍了无线通信技 术的发展。认知无线电技术通过对空闲频谱的机会 接入,实现了频谱资源的灵活管理,对未来无线通 信技术的发展有重要意义^[1,2]。

频谱感知是认知无线电关键的核心技术之一^[3], 经过科研工作者多年研究,目前的频谱感知技术有 数十种之多^[4],可将其分为窄带频谱感知和宽带频 谱感知。对于窄带频谱感知既有传统的匹配滤波检 测、能量检测、循环平稳检测等,又有一些改进的 算法,例如特征值检测和相关检测。对于宽带频谱 感知,重点是关注信号的采集方法和处理方式,例 如对信号的压缩感知,随机采样和小波分析等。这 些技术对推动认知无线电的发展具有重要作用,但 在具体应用中受到诸多限制,使得检测性能不佳。 匹配滤波检测对授权用户的先验信息有较高的依赖 性,借助于授权用户的配合,方可获得最佳的检测 性能;能量检测作为一种全盲算法特别适用于感知 用户的频谱检测,应用时需要估算出叠加噪声的功 率,但由于噪声功率的不稳定性而产生的"噪声 墙"会使得能量检测实现困难,当信噪比较低时, 检测性能会急剧下降^[5]。为克服这些不足,一些基

收稿日期: 2019-01-24; 改回日期: 2019-09-05; 网络出版: 2020-01-20 *通信作者: 周义明 zhouyiming@bipt.edu.cn

于能量检测的改进算法不断被提出^[6-8];循环平稳 检测是基于授权用户信号的周期性提出的,接收端 信号必须满足广义上的循环平稳,且要求信号与噪 声严格非相关,实际应用中需要计算接收信号的循 环谱密度,使得数据运算量大、感知时间长。为克 服传统检测技术的不足,相继提出了信号周期图谱 相关检测^[9]、特征值检测^[10,11]、协方差矩阵检测^[12] 等。信号周期图谱相关检测解决了信噪比较低时出 现的问题,但需要信号的部分先验信息,协方差矩 阵检测需要采样信号有较强的相关性以获得更好的 检测效果^[13],或对信号过采样以增加信号的冗余信 息量来提高信号的相关性^[14],为此又分别了提出一 种加权协方差矩阵检测算法^[15]和一种基于随机相关 信息估计的检测算法^[16]。

为解决传统相关检测要求采样信号有较强相关 性的问题,本文对采样信号相关性要求转向对信号 包络相关性的要求,由于信号包络有更低的频谱成 分,对同一采样信号有更强的相关性。为提高检测 性能,利用信号的载波信息,对信号采样值按载波 (中心频谱)周期整数倍数进行等时长截取,通过只 计算相邻周期内的信号相关特性,构造了信号包络 自相关矩阵。矩阵元素的相关性有两种: (1)矩阵 主对角线元素为信号的均方值,其为信号自相关最 大值,提高了统计量的期望值;(2)其它元素为间 隔等时长的自相关值,元素近似相等,降低了统计 量的方差。因此与传统的相关矩阵比较,包络自相 关矩阵检测 (envelope autocorrelation matrixbased spectrum sensing) 增加了检测概率分布函数 与虚警概率分布函数的中心距离(均值距离增加)且 提高了两者的收敛速度(方差降低),使得其对于相 同的虚警概率有更好的检测性能,且检测阈值仅与 截取数据量有关,而与系统噪声无关。相对于能量 检测而言,由于与噪声功率无关,因此不会出现由 于噪声不确定性,导致无法检测的问题。相对于传 统相关检测而言,降低了信号相关性的要求,对相 同的虚警概率约束,简化了检测阈值的计算并优化 了检测性能。

本文其它部分安排如下:第2节建立了系统模型;第3节提出了包络自相关矩阵检测算法设计; 第4节分析了算法的检测性能;第5节给出了算法实 现的详细步骤;第6节仿真了不同参数对检测性能 的影响并分析了提高检测性能的措施;第7节对全 文进行了小结。

2 系统模型

设有发送端调制信号

$$x(t) = \operatorname{Re}\left[s(t)\mathrm{e}^{\mathrm{j}2\pi f_{\mathrm{c}}t}\right] \tag{1}$$

其中,s(t)为发送端的基带信号; f_c 为调制载波频率; Re[·]表示取实部。

经瑞利多径衰落信道传播后,在接收端有

$$y'(t) = \sum_{n=1}^{L} C_n x(t - \tau_n) + w(t)$$

= $\sum_{n=1}^{L} C_n \operatorname{Re} \left[s(t - \tau_n) e^{j2\pi f_c(t - \tau_n)} \right] + w(t)$
= $\sum_{n=1}^{L} C_n \operatorname{Re} \left[e^{j(2\pi f_c t - 2\pi f_c \tau_n)} s(t - \tau_n) \right] + w(t)$
= $\sum_{n=1}^{L} \operatorname{Re} \left[C_n e^{-j\varphi_n} s(t - \tau_n) e^{j2\pi f_c t} \right] + w(t),$
 $\varphi_n \triangleq 2\pi f_c \tau_n$ (2)

其中, *L*为传播路径数; C_n 为第n条传播路径幅度 衰减系数; τ_n 为第n条传播路径延迟时间; $2\pi f_c t - \phi_n$ 为接收信号在t时刻的瞬时相位; w(t)为 接收端的加性噪声。

式(2)进一步分析有

$$y'(t) = \operatorname{Re}\left[e^{j2\pi f_c t}\sum_{n=1}^{L}C_n e^{-j\varphi_n}s(t-t_n)\right] + w(t)$$
 (3)
根据欧拉公式有
 $C_n e^{-j\varphi_n}s(t-\tau_n) = C_n s(t-\tau_n)\cos\varphi_n$
 $-iC_n s(t-\tau_n)\sin\varphi_n$ (4)

则

$$\sum_{n=1}^{L} C_n e^{-j\varphi_n} s(t-\tau_n)$$

$$= \sum_{n=1}^{L} C_n s(t-\tau_n) \cos \varphi_n - j \sum_{n=1}^{L} C_n s(t-\tau_n) \sin \varphi_n$$

$$= a(t) e^{-j\varphi(t)}$$
(5)

其中,

$$a(t) = \sqrt{\left[\sum_{n=1}^{L} C_n s(t-\tau_n) \cos \varphi_n\right]^2 + \left[\sum_{n=1}^{L} C_n s(t-\tau_n) \sin \varphi_n\right]^2}$$

$$\varphi(t) = \arctan\left[-\sum_{n=1}^{L} C_n s(t-\tau_n) \sin \varphi_n \middle/ \sum_{n=1}^{L} C_n s(t-\tau_n) \cos \varphi_n\right]\right]$$
(6)

联立式(3)和式(5)有

$$y'(t) = \operatorname{Re}\left[a(t)e^{-j\varphi(t)}e^{j2\pi f_{c}t}\right] + w(t)$$
$$= a(t)\cos\left[2\pi f_{c}t - \varphi(t)\right] + w(t)$$
(7)

因为假设信号是经瑞利多径衰落信道传播的,

易知y'(t)的包络a(t)为瑞利分布的时变非线性信号, 不妨设包络平均功率为 $2\delta_a^2$,对应的概率密度函数为

$$p_{\rm a}(x) = \frac{x}{\delta_{\rm a}^2} \exp\left(-\frac{x^2}{2\delta_{\rm a}^2}\right) \ , x \ge 0 \tag{8}$$

 $\phi(t)$ 满足均匀分布,对应的概率密度函数为

$$p_{\varphi}(\theta) = \frac{1}{2\pi}, \theta \in [-\pi, \pi)$$
(9)

且a(t)和 $\phi(t)$ 相互独立。

因此,信号经瑞利多径衰落信道传播后的频谱 感知可等效为式(10)的2元假设问题

$$y'(t) = \begin{cases} w(t) &, \text{H0} \\ a(t)\cos\left[2\pi f_{c}t - f(t)\right] + w(t) &, \text{H1} \end{cases} (10)$$

H0表示授权用户静默; H1表示授权用户工作。

3 方案设计

设采样周期为T_s=1/(Nf_c),即在一个载波周期 内信号采样数为N,则在t=nT_s时刻的采样信号值为

$$y'(nT_{\rm s}) = a(nT_{\rm s})\cos\left[2\pi\frac{nT_{\rm s}}{NT_{\rm s}} - \varphi(nT_{\rm s})\right] + w(nT_{\rm s})$$
(11)

忽略 T_s ,将 $y'(nT_s)$ 简化为y(n),令

$$\boldsymbol{Y}\left(i\right) = \begin{bmatrix} y\left(n+iN\right), y\left(n+iN+1\right), \cdots, \\ y\left(n+iN+N-1\right) \end{bmatrix}^{\mathrm{T}}$$
(12)

限定矩阵阶数K为奇数,构造近似相关矩阵为

$$\boldsymbol{R}_{K\times K} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{(K-1)K} \\ r_{21} & r_{22} & \cdots & r_{(K-1)K} \\ \vdots & \vdots & \ddots & \vdots \\ r_{K(K-1)} & r_{(K-1)K} & \cdots & r_{(K-1)K} \end{bmatrix}_{K\times K}$$
(13)

其中, $1 \le i, j \le K$,定义

$$r_{ij} = \mathbb{E}\left\{\frac{1}{N}\sum_{k=0}^{N-1} y \left[n + (i-1)N + k\right]\right\}$$

$$y \left[n + (j-1)N + k\right]\right\}$$
(14)

(1) 当授权用户静默时

$$r_{ij} | \mathbf{H0} = \begin{cases} 0, & i \neq j \\ \delta_w^2, & i = j \end{cases}$$
(15)

有假设H0为真时的矩阵为

$$\boldsymbol{R}_{K \times K} | \mathbf{H} 0 = \begin{bmatrix} \delta_w^2 & 0 & \cdots & 0\\ 0 & \delta_w^2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \delta_w^2 \end{bmatrix}_{K \times K}$$
(16)

$$r_{ij} | \mathbf{H1} = \begin{cases} \rho_{ij} \delta_{\mathbf{a}}^2, & i \neq j \\ \delta_{\mathbf{a}}^2 + \delta_{w}^2, & i = j \end{cases}$$
(17)

其中, $0 \leq \rho_{ij} \leq 1$ 为在第 $i \uparrow 1/f_c$ 时间段与第 $j \uparrow 1/f_c$ 时间段内包络幅值的相关系数,且 $\rho_{ij} = \rho_{ji}$ 。有假设H1为真时的矩阵为

$$\boldsymbol{R}_{K imes K} | \mathrm{H1}$$

$$= \begin{bmatrix} \delta_{a}^{2} + \delta_{w}^{2} & \rho_{12}\delta_{a}^{2} & \cdots & \rho_{(K-1)K}\delta_{a}^{2} \\ \rho_{21}\delta_{a}^{2} & \delta_{a}^{2} + \delta_{w}^{2} & \cdots & \rho_{(K-1)K}\delta_{a}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{(K-1)K}\delta_{a}^{2} & \rho_{(K-1)K}\delta_{a}^{2} & \cdots & \delta_{a}^{2} + \delta_{w}^{2} \end{bmatrix}_{K \times K}$$
(18)

进一步观察易知两个矩阵均为对称矩阵,且矩 阵主对角线元素满足式(19)

$$\left. \begin{array}{l} \mathbf{R}_{K \times K} \left| \mathrm{H0} , \ r_{ii} = \delta_w^2 \\ \mathbf{R}_{K \times K} \left| \mathrm{H1} , \ r_{ii} = \delta_\mathrm{a}^2 + \delta_w^2 \end{array} \right\}$$
(19)

则可定义假设H0为真时有 $K \times K$ 阶 $M(m_{ij})$ 矩 阵为

$$\boldsymbol{M} | \mathbf{H} 0 = \frac{\boldsymbol{R}_{K \times K} | \mathbf{H} 0}{r_{ii}} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{K \times K}$$
(20)

对于假设H1为真时,进一步分析可知,包络的频率变化相对于载波频率而言变化极弱,因此可以认为相邻载波周期内,发送端信号经信道衰减后的包络具有相同的相关系数,可令 $\rho_{ij} = \rho$ (其中,|i-j|=1)。

$$\boldsymbol{M} | \mathbf{H} \mathbf{1} = \frac{\boldsymbol{R}_{K \times K} | \mathbf{H} \mathbf{1}}{r_{ii}} = \begin{bmatrix} 1 & \rho \left(1 - \frac{1}{\gamma + 1} \right) & \cdots & \rho \left(1 - \frac{1}{\gamma + 1} \right) \\ \rho \left(1 - \frac{1}{\gamma + 1} \right) & 1 & \cdots & \rho \left(1 - \frac{1}{\gamma + 1} \right) \\ \vdots & \vdots & \ddots & \vdots \\ \rho \left(1 - \frac{1}{\gamma + 1} \right) & \rho \left(1 - \frac{1}{\gamma + 1} \right) & \cdots & 1 \end{bmatrix}_{K \times K}$$
(21)

其中, $\gamma = \frac{\delta_{\mathrm{a}}^2}{\delta_w^2}$ 。

取矩阵**M**的次对角线元素进行分析,构造统计量T

$$T = \sum_{i=1}^{K} m_{i(K-i+1)}$$
(22)

因为*K*为奇数,理想情况下有:若*T*>1,则授 权用户处于工作状态;若*T*=1,则授权用户处于静 默状态。

4 性能分析

4.1 统计量的分析

由大数定理易知,统计量T服从正态分布。对 统计量T的性能分析如下:

(1) 当授权用户处于静默状态时,对统计量 T有

(a) 均值

$$\mu_0 = \mathcal{E}(T) | \mathcal{H}0 = \frac{1}{K}$$
(23a)

(b) 方差

$$\begin{split} \varepsilon_0{}^2 &= \mathcal{D}(T) \left| \mathcal{H}0 \right. \\ &= \frac{1}{K} \left[\left(1 - \frac{1}{K} \right)^2 + (K - 1) \left(\frac{1}{K} \right)^2 \right] \\ &= \frac{1}{K} - \frac{1}{K^2} \end{split} \tag{23b}$$

(2) 当授权用户处于工作状态时,对统计量T有(a) 均值

$$\mu_{1} = \mathcal{E}(T) | \mathcal{H}1$$

= $\frac{1}{K} \left[1 + \rho \left(1 - \frac{1}{\gamma + 1} \right) (K - 1) \right]$ (24a)
(b) 方差

$$\varepsilon_{1}^{2} = D(T) |H1 = \frac{1}{K} \left\{ (1 - \mu_{1})^{2} + \frac{1}{K} (K - 1) \left[\rho \left(1 - \frac{1}{\gamma + 1} \right) - 1 \right]^{2} \right\}$$
(24b)

则在两种假设下,统计量T的概率密度函数为

$$p_T(x|\text{H0}) = (2\pi{\varepsilon_0}^2)^{-\frac{1}{2}} \exp\left[-\frac{(x-\mu_0)^2}{2{\varepsilon_0}^2}\right]$$
 (25a)

$$p_T(x|\text{H1}) = (2\pi\varepsilon_1^2)^{-\frac{1}{2}} \exp\left[-\frac{(x-\mu_1)^2}{2\varepsilon_1^2}\right]$$
 (25b)

(3) 假设H0与H1时,对统计量T均值分析有

$$\mu_1 - \mu_0 = \rho \left(1 - \frac{1}{\gamma + 1} \right) \left(1 - \frac{1}{K} \right) \qquad (26)$$

由于已知的采样信号的ρ和γ均为恒定值,概率 密度函数的中心距仅与K有关,随着K的增加,中 心距增大,检测性能更佳。当K趋于无穷时, 式(26)有最大中心距为

$$\lim_{K \to \infty} (\mu_1 - \mu_0) = \rho \left(1 - \frac{1}{\gamma + 1} \right)$$
(27)

4.2 虚警概率和检测概率分析

实际情况下,由于采样点数不是无穷大,噪声 信号也不完全是白噪声的。设检测阈值为 η ,则根 据贝叶斯准则有统计量T的检测概率 $P_{D|T}$ 和虚警概 率 P_{FAT} 为

$$P_{\mathrm{D}|T} = P(\mathrm{H1} |\mathrm{H1})_{T} = \int_{\eta}^{+\infty} p_{T} \left(x |\mathrm{H1}\right) \mathrm{d}x$$
$$= Q\left(\frac{\eta - \mu_{1}}{2\varepsilon_{1}^{2}}\right)$$
(28)

$$P_{\mathrm{FA}|T} = P(\mathrm{H1} |\mathrm{H0})_{T} = \int_{\eta}^{+\infty} p_{T} \left(x |\mathrm{H0} \right) \mathrm{d}x$$
$$= Q \left(\frac{\eta - \mu_{0}}{2\varepsilon_{0}^{2}} \right)$$
(29)

其中

$$Q(x) = \int_{x}^{+\infty} \left(\frac{1}{2\pi}\right)^{1/2} \exp\left(-\frac{t^2}{2}\right) \mathrm{d}t \qquad (30)$$

在频谱感知中,需要假定虚警概率 $P_{FA|T} = \alpha$ 的约束条件下,使检测概率 $P_{D|T}$ 最大。根据Ney-man-Pearson准则,可得检测门限值为

$$\eta = 2\varepsilon_0^2 Q^{-1}(\alpha) + \mu_0 \tag{31}$$

因此有检测概率

$$P_{\mathrm{D}|T} = Q\left(\frac{2\varepsilon_0^2 Q^{-1}(\alpha) + \mu_0 - \mu_1}{2\varepsilon_1^2}\right) \qquad (32)$$

5 算法步骤

(1) 确定N, K和虛警概率 α ;

(2) 对信号采样,设信号包络为y(n),构造向 量Y(i);

(3) 由式(14)计算r_{ij},构造矩阵**R**;

(4) 对矩阵**R**所有元素除以主对角元素的值, 构造矩阵**M**(m_{ii});

(5) 构造统计量*T*,由式(23),式(24)计算 $\mu_0, \varepsilon_0^2, \mu_1, \varepsilon_1^2$,利用式(25)求出统计量*T*的概率密 度函数;

(6) 由式(31)计算检测门限值η;

(7) 由式(32)计算检测概率 $P_{D|T}$ 。

6 仿真

为验证统计量的性能,分别在不同参数条件下 对包络矩阵的频谱感知算法进行了仿真。

仿真1:设定接收信号包络在相邻载波周期内的相关系数ρ=0.90, K=51。虚警概率P_{FA|T}在不同限定条件下所获得的检测概率,如图1所示。由图1

可知,包络与噪声功率比(envelope to noise)对检 测概率影响较大,提高信噪比能极大改善检测性 能。若将虚警概率限定为 $P_{FA|T} = 0.10$,当 $\gamma=0.01(-20 \text{ dB})$ 时, $P_{D|T} = 0.30$ 显然此时有极低的 检测性能;当 $\gamma=0.20(-7 \text{ dB})$ 时, $P_{D|T} = 0.96$,完 全满足检测性能的要求。本算法理论上只对采样信 号包络功率进行了分析,实际使用中由于采样信号 中含有载波功率,包络噪声功率比有进一步提高的 可能,性能也会得到较大的提高。

仿真2: 假定γ=0.10(-10 dB), K=51条件下, 比较采样信号相关系数对检测性能的影响,如图2 所示。较强的信号相关性能大大提高检测性能,为 此可通过加大采样频率来提高信号相关性,但同时 会提高采样设备的要求和增加计算量。

仿真3:限定*P*_{FA|T} =0.10,*K*=51时,包络噪声 功率比与检测概率的对应关系,如图3所示。当信 号包络噪声功率比较低时,相关系数对检测性能的 影响有限,随着信号包络噪声功率比的增加,有较 大相关系数的信号(采样更密集)能快速提高检测性 能,但当ρ>0.90时,检测性能的提高已不明显,因 此通过无限提高采样率来提高检测性能是不可取的。

仿真4:为比较包络检测(envelope detection)、 能量检测(energy detection)和传统相关检测(以统 计协方差检测-CAV detection为例)的检测性能, 其中设定包络检测的构造近似相关矩阵的阶数

图 1 不同包络噪声功率比条件下检测概率与虚警概率的关系

图 2 不同信号相关系数对检测概率的影响

K=51, N=16,统计协方差检测的平滑因子L=32, 且能量检测中不考虑噪声不确定性对检测性能的影 响。仿真了当γ=0.20(-7 dB)时,三者之间检测概 率与虚警概率的关系,如图4所示。由图可见,基 于构造近似相关矩阵的包络检测技术由于极大提高 了信号的相关性计算,降低了矩阵元素的偏差,使 得检测性能要远远优于其它两种检测。

仿真5:为更好说明包络检测的效果,将理论 推导结论与实际检测效果进行了对比。授权用户发 射信号为QPSK调制,载波频率为1 MHz,每个码 元含16个载波周期,多径信道数量为128条,最大 多普勒频偏为10 Hz,模拟瑞利分布信道由MATLAB 自带函数rayleighchan生成,矩阵的阶数*K*=51。 为提高信号采样值之间的相关性,将采样率设为载 波周期的64倍,虚警概率设为*P*_{FA|T}=0.10,理论 仿真时信号间的相关系数ρ由式(33)根据实际采集 信号估算,即

$$\rho = \frac{\text{COV}\left(Y\left(i\right), Y\left(i+1\right)\right)}{\delta_{Y(i)}\delta_{Y(i+1)}} \tag{33}$$

其中,COV为协方差,δ为对应信号的方差。图5 显示了不同信噪比时,实际感知与理论感知的效果 比较,由图5易知,当信噪比低于-3dB时,理论值 与实际值之间的检测效果差距较大,这是由于理论 计算假设了信号中所含的噪声采样值之间完全没有 相关性,而实际感知由于是对采样信号进行截取,

图 3 包络噪声功率比与检测概率在不同相关系数下的对应关系

图 4 包络检测、能量检测和统计协方差检测的检测性能比较

图 5 实际感知与理论感知在不同信噪比条件下的效果比较

使得噪声具有较大的相关性,通过提高信号采样率 和采样信号长度可以进一步提高实际的检测效果。

7 结束语

本文提出的基于信号包络自相关构造矩阵的频 谱感知算法优化了检测性能,并分别给出了检测概 率和虚警概率的显式表达式。根据Neyman-Pearson准则,在虚警概率约束的条件下,计算出检测 阈值和检测概率,算法的实现无需信道噪声和授权 用户的先验信息。仿真分别验证了信号包络与噪声 功率比、信号相关系数、虚警概率和检测概率之间 的关系和相互影响,并提出了改善检测性能的可行 方案。同时对包络检测、能量检测和统计协方差检 测的检测性能进行了仿真比较,检测效果显示包络 检测无论在计算上和实现上要更优于其它两种检测 方案。

参考文献

- AKYILDIZ I F, LEE W Y, VURAN M C, et al. A survey on spectrum management in cognitive radio networks[J]. *IEEE Communications Magazine*, 2008, 46(4): 40–48. doi: 10.1109/MCOM.2008.4481339.
- [2] GHASEMI A and SOUSA E S. Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs[J]. *IEEE Communications Magazine*, 2008, 46(4): 32–39. doi: 10.1109/MCOM.2008.4481338.
- [3] HAMID M, BEN SLIMANE S, VAN MOER W, et al. Spectrum sensing challenges: Blind sensing and sensing optimization[J]. IEEE Instrumentation & Measurement Magazine, 2016, 19(2): 44-52. doi: 10.1109/MIM.2016. 7462794.
- [4] ALI A and HAMOUDA W. Advances on spectrum sensing for cognitive radio networks: Theory and applications[J]. *IEEE Communications Surveys & Tutorials*, 2017, 19(2): 1277–1304. doi: 10.1109/COMST.2016.2631080.
- [5] TANDRA R and SAHAI A. SNR walls for signal detection[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1): 4–17. doi: 10.1109/jstsp.2007.914879.
- [6] CHATZIANTONIOU E, ALLEN B, VELISAVLJEVIC V, et al. Energy detection based spectrum sensing over two-

wave with diffuse power fading channels[J]. *IEEE* Transactions on Vehicular Technology, 2017, 66(1): 868-874. doi: 10.1109/TVT.2016.2556084.

- [7] SINGH A, BHATNAGAR M R, and MALLIK R K. Performance of an improved energy detector in multihop cognitive radio networks[J]. *IEEE Transactions on Vehicular Technology*, 2016, 65(2): 732–743. doi: 10.1109/ TVT.2015.2401332.
- [8] CHIN W L, LI Jiaming, and CHEN H H. Low-complexity energy detection for spectrum sensing with random arrivals of primary users[J]. *IEEE Transactions on Vehicular Technology*, 2016, 65(2): 947–952. doi: 10.1109/TVT. 2015.2405558.
- QUAN Zhi, ZHANG Wenyi, SHELLHAMMER S J, et al. Optimal spectral feature detection for spectrum sensing at very low SNR[J]. *IEEE Transactions on Communications*, 2011, 59(1): 201–212. doi: 10.1109/tcomm.2010.112310.
 090306.
- [10] MEHRABIAN A and ZAIMBASHI A. Robust and blind eigenvalue-based multiantenna spectrum sensing under IQ imbalance[J]. *IEEE Transactions on Wireless Communications*, 2018, 17(8): 5581–5591. doi: 10.1109/ TWC.2018.2847357.
- [11] BOUALLEGUE K, DAYOUB I, GHARBI M, et al. Blind spectrum sensing using extreme eigenvalues for cognitive radio networks[J]. *IEEE Communications Letters*, 2018, 22(7): 1386–1389. doi: 10.1109/LCOMM.2017.2776147.
- [12] JIN Ming, GUO Qinghua, and LI Youming. On covariance matrix based spectrum sensing over frequency-selective channels[J]. *IEEE Access*, 2018, 6: 29532–29540. doi: 10.1109/ACCESS.2018.2842099.
- [13] MERRITT J C and CHISUM J D. High-speed crosscorrelation for spectrum sensing and direction finding of time-varying signals[J]. *IEEE Sensors Journal*, 2018, 18(15): 6161–6168. doi: 10.1109/JSEN.2018.2847598.
- [14] HAN Weijia, HUANG Chuan, LI Jiandong, et al. Correlation-based spectrum sensing with oversampling in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(5): 788-802. doi: 10.1109/ jsac.2014.2361076.
- [15] JIN Ming, GUO Qinghua, XI Jiangtao, et al. Spectrum sensing using weighted covariance matrix in Rayleigh fading channels[J]. *IEEE Transactions on Vehicular Technology*, 2015, 64(11): 5137–5148. doi: 10.1109/TVT.2014.2379924.
- [16] SHARMA R K and WALLACE J W. Correlation-based sensing for cognitive radio networks: Bounds and experimental assessment[J]. *IEEE Sensors Journal*, 2011, 11(3): 657–666. doi: 10.1109/JSEN.2010.2058097.
- 周义明: 男, 1976年生, 讲师, 研究方向为无线通信、信号处理、 FPGA.
- 李英顺: 女,1971年生,教授,研究方向为信号检测与处理、故障 识别.
- 田小平: 男,1973年生,副教授,研究方向为无线通信、信号处 理、室内定位.