非高斯背景下基于Sigmoid函数的信号检测

代 振 王平波* 卫红凯 (海军工程大学电子工程学院 武汉 430033)

摘 要:针对非高斯背景下的弱信号检测问题,该文提出一种基于Sigmoid函数的信号检测(SFD)方法。首先依据
 混合高斯模型对非高斯背景建模,在此基础上系统研究了参数k与SFD的检测性能以及检测特性的关系,确定了
 k的最佳的取值,并指出SFD在检测性能达到最优的同时也具有恒虚警特性。其次通过固定k值得到了一种新的非参量检测方法,较传统的匹配滤波性能有明显提升。最后进行仿真分析验证了SFD的有效性和优越性。
 关键词:信号检测;非高斯噪声;Sigmoid函数;恒虚警;非参量检测
 中图分类号:TN911.23
 文献标识码:A
 文章编号:1009-5896(2019)12-2945-06
 DOI: 10.11999/JEIT190012

Signal Detection Based on Sigmoid Function in Non-Gaussian Noise

DAI Zhen WANG Pingbo WEI Hongkai

(College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China)

Abstract: To solve the problem of weak signals detection in non-Gaussian background, a method based on Sigmoid function is proposed which is named Sigmoid Function Detector (SFD). Firstly, the non-Gaussian background is modeled as a mixed Gaussian model. Based on this, the relationship between parameter k and SFD's performance and characteristics are systematically analyzed. It is pointed out that SFD will be a constant false alarm detector when its detection performance is optimal. Secondly, a new non-parametric detector is proposed via fixing the parameter k, which has significant improvement over matched filter. Finally, simulation analysis is carried out to verify the effectiveness and superiority of SFD.

Key words: Signal detection; Non-Gaussian noise; Sigmoid function; Constant false alarm; Non-parametric detection

1 引言

在信号检测领域中,通常认为干扰背景是高斯 白噪声,其最佳检测为匹配滤波(Matched Filter, MF)。但实际应用中的一些干扰背景,比如主动声 呐中的混响、雷达中的杂波等,由于冲激的存在, 它们的概率密度函数(Probability Density Function, PDF)往往具有重尾(heavy tails)特性,呈现 出一定的非高斯特性,此时匹配滤波效果会大为 降低^[1]。

非高斯背景下的信号检测,通常的做法是在匹 配滤波之前加一个非线性处理器,以抑制接收信号 中的大幅值样本。常见的非线性处理有限幅处理^[2]、 局部最优检测(Locally Optimal Detector, LOD)^[3-8] 以及高斯化处理等^[9,10]。限幅器结构简单,适应性 强,但需要人工选取阈值,检测性能难以保证。 LOD是弱信号检测下的次最优检测,但结构一般 较为复杂,稳健性也较弱,其检测性能依赖于非高 斯背景的PDF估计精度,如果估计失配,性能可能 会明显下降。高斯化处理的核心思想是将非高斯背 景高斯化,以更好地适应匹配滤波。而文献[11]指 出数据的高斯化处理与提升检测性能并无直接关 系,而且高斯化处理结构也比较复杂,稳健性也较 差。另外,实际检测时通常希望检测器能具有恒虚 警特性,但LOD和高斯化处理实现恒虚警检测都 比较困难。

Sigmoid函数可以认为是限幅器的一种平滑近 似形式,在很多领域中获得了广泛应用^[12,13]。本文 基于Sigmoid函数提出了一种新的信号检测方法 —SFD,并详细分析了其检测性能与检测特性。理 论和仿真结果都表明,SFD的检测性能与LOD相 近,但结构简单,性能稳健,并具有恒虚警特性, 更易于工程实现。

收稿日期: 2019-01-07; 改回日期: 2019-05-08; 网络出版: 2019-05-24 *通信作者: 王平波 blackberet@163.com

基金项目: 国家自然科学基金(51109218)

Foundation Item: The National Natural Science Foundation of China (51109218)

2 非高斯背景建模

对工程中应用很广的一类非高斯背景(如主动 声呐中的混响、雷达中的杂波等),对其进行预处 理(去均值、预白化、强度均匀化)后,可以用式(1) 所示的2阶零均值混合高斯模型(ZMGM2) 进行建模^[14]

$$f(x) = \varepsilon_{\rm B}\varphi(x/\sigma_{\rm B}) + \varepsilon_{\rm I}\varphi(x/\sigma_{\rm I}) \tag{1}$$

其中, $\varphi(x)$ 是标准正态分布的PDF。

式(1)其实是将非高斯背景看作是常规噪声与 冲激噪声(混响、杂波等随机脉冲)的叠加^[14]。其中 $\sigma_{\rm B}^2, \sigma_{\rm I}^2$ 分别表示常规噪声与冲激噪声的方差,而 $\varepsilon_{\rm B},$ $\varepsilon_{\rm I}$ 是其各自的混合参数,并且满足 $\varepsilon_{\rm B} + \varepsilon_{\rm I} = 1$ 。通 常情况下有 $\sigma_{\rm I}^2$ 大于 $\sigma_{\rm B}^2$,而 $\varepsilon_{\rm I}$ 小于 $\varepsilon_{\rm B}$,这表明非高斯 背景是由大部分幅值较小的常规噪声与少部分幅值 较大的冲激噪声叠加得到,是符合实际情况的。另 外,易知其均值为0,方差为 $\sigma^2 = \varepsilon_{\rm B}\sigma_{\rm B}^2 + \varepsilon_{\rm I}\sigma_{\rm I}^2$ 。

3 检测问题描述

考虑式(2)所示的信号接收模型

$$\boldsymbol{X} = \boldsymbol{\theta}\boldsymbol{S} + \boldsymbol{W} \tag{2}$$

其中 $X = [X_1, X_2, \dots, X_N]^T$ 表示接收信号, $\theta \ge 0$ 是 一个常数。 $S = [s_1, s_2, \dots, s_N]^T$ 是待检测的确知信 号, $W = [w_1, w_2, \dots, w_N]^T$ 是如式(1)所示的非高斯 背景干扰,且满足独立同分布假设。当 $\theta = 0$ 时, 表示待检测信号没有出现,记为假设0,即H₀假 设,当 $\theta > 0$ 时,信号出现,称为H₁假设,检测模 型如式(3)所示

$$\begin{array}{c} \theta = 0, \quad \mathrm{H}_{0} \mathbb{C} \mathbb{C} \\ \theta > 0, \quad \mathrm{H}_{1} \mathbb{C} \mathbb{C} \end{array} \right\}$$
(3)

对于上述检测模型,通常的检测方式是先对接收信号进行变换,然后进行匹配滤波,其检验统计量的形式为^[11]

$$T(\boldsymbol{X}) = \sum_{i=1}^{N} s_i g(X_i) \tag{4}$$

其中,g(x)为x的变换函数。显然 $g(X_i)$,T(X)也是随机变量。

4 常见的变换函数

常见的变换函数主要有以下几种: (1)匹配滤波 直接令g(x) = x,这种检测方式称为MF。

(2) 限幅器

限幅检测器(LiMiter Detector, LMD)下的g(x) 如式(5)所示, *C*称为限幅阈值。

$$g(x) = \begin{cases} -C, & x < -C \\ x, & |x| \le C \\ C, & x > C \end{cases}$$
(5)

(3)LOD

LOD是弱信号下的次最佳检测,其变换函数 g(x) = -f'(x)/f(x)。将MF,LMD以及LOD下的 g(x)分别记为 $g_{MF}(x), g_{LM}(x)$ 和 $g_{LO}(x)$,其对比如 图1所示,仿真参数为 $\sigma_{B} = 0.8, \varepsilon_{I} = 0.3, \sigma_{I} = 4$ 。

可以将 $g_{MF}(x)$ 与 $g_{LM}(x)$ 都看作对 $g_{LO}(x)$ 的某种近似。 $g_{MF}(x)$ 与 $g_{LO}(x)$ 对小样本都近似线性输出,但 $g_{MF}(x)$ 完全没有对大样本进行抑制,所以MF的检测性能通常最差; $g_{LM}(x)$ 不仅在小样本部分近似线性输出,还对大样本进行抑制,与 $g_{LO}(x)$ 更加接近,其检测性能会优于MF,但如何选择较为合适的C值使得LMD性能最优还较为困难。另外, $g_{LM}(x)$ 虽然可以抑制大样本,但其抑制是"硬限幅",不如 $g_{LO}(x)$ 光滑。

5 Sigmoid检测

5.1 检测结构

令g(x)为式(6)所示的形式

$$g(x) = s(x) - 0.5$$
 (6)

其中, $s(x) = 1/(1 + e^{-kx})$, k > 0, 是Sigmoid 函数。

本文称基于式(6)的检测方法为Sigmoid检测 (SFD),其检验统计量记为 $T_{SF}(X)$,变换函数记 为 $g_{SF}(x) \circ g_{SF}(x) = g_{LO}(x), g_{LM}(x)$ 的对比如图2 所示。可以看出, $g_{SF}(x)$ 是奇函数,并且具有光滑 的限幅效果。另外可以看出, $g_{SF}(x)$ 对大样本的抑 制程度仅与k值有关,k越大,抑制程度就越强。

5.2 检测性能分析

下面分析SFD的检测性能。由中心极限定理可 知,对独立同分布的N个随机变量,只要其均值与 方差均存在,则随着随机变量的个数N逐渐增大 时,随机变量的和将逐渐趋近于高斯分布。因此为

图 2 $g_{\rm SF}(x)$ 与 $g_{\rm LO}(x), g_{\rm LM}(x)$ 对比

求 $T_{SF}(X)$ 的分布只需要求不同假设下 $g(X_i)$ 的均值 与方差即可。在假设0下易得

$$E[g(X_i) | H_0] = \int_{-\infty}^{+\infty} g(x) f(x) dx = 0$$

$$V[g(X_i) | H_0] = \int_{-\infty}^{+\infty} g^2(x) f(x) dx = v(k) - 0.25$$
(7)

其中, $v(k) = \int_{-\infty}^{+\infty} \frac{1}{(1 + e^{-kx})^2} f(x) dx$, 并且易证 0.25<v(k) < 0.5。

当 θ 比较小时,在假设1下 $g(X_i)$ 的均值为

$$E[g(X_i) | H_1] = \int_{-\infty}^{+\infty} g(x) f(x - \theta s_i) dx$$
$$\approx \int_{-\infty}^{+\infty} g(x) f(x) dx - \theta s_i \int_{-\infty}^{+\infty} g(x) f'(x) dx$$
$$= \theta s_i \int_{-\infty}^{+\infty} g'(x) f(x) dx$$
$$= \mu (k) \theta s_i$$
(8)

同理可得假设1下g(X_i)的方差为

$$V[g(X_i) | H_1] = \int_{-\infty}^{+\infty} g^2(x) f(x - \theta s_i) dx - (\mu (k) \theta s_i)^2$$
$$\approx \int_{-\infty}^{+\infty} g^2(x) f(x) dx - \theta \gamma (s_i)$$
$$\approx V[g(X_i) | H_0]$$
(9)

其中, $\mu(k) = k [0.5 - v(k)], \gamma(s_i) 为 s_i$ 的函数。 因此可得 $T_{SF}(\mathbf{X})$ 的渐近分布为

$$T_{\rm SF}(\mathbf{X}) \sim \begin{cases} N(0, (v(k) - 0.25) E_{\rm s}), & {\rm H}_{\rm 0} \\ N(\mu(k) \theta E_{\rm s}, (v(k) - 0.25) E_{\rm s}), {\rm H}_{\rm 1}^{(10)} \end{cases}$$

其中, $E_{\rm s} = \sum_{i=1}^{N} s_i^2$ 表示信号能量。

由式(10)可知 $T_{SF}(X)$ 的均值不同而方差相同,其虚警概率 P_{f} 与检测概率 P_{d} 满足式(11)关系^[15]

$$P_{\rm f} = Q \left(\eta / \sqrt{(v(k) - 0.25) E_{\rm s}} \right) \eta = Q^{-1} (P_{\rm f}) \sqrt{(v(k) - 0.25) E_{\rm s}} P_{\rm d} = Q \left(Q^{-1} (P_{\rm f}) - \sqrt{d_{\rm SF}^2} \right)$$
(11)

其中, $Q(x) = \int_{x}^{+\infty} \frac{e^{-t^{2}/2}}{\sqrt{2\pi}} dt, Q^{-1}(x) 是 Q(x) 的反$ 函数。 η 表示门限, d_{SF} 为偏移系数^[15],其计算公 式为

$$d_{\rm SF}^2 = \frac{\left[0.5 - v\left(k\right)\right]^2 k^2 \theta^2 E_{\rm s}}{v\left(k\right) - 0.25}$$
(12)

6 k值选取与检测特性分析

6.1 检测性能最优下的k值选取与恒虚警特性

综合式(11)、式(12)可知,当 $\theta^2 E_s$ 一定时,在 给定的虚警概率下SFD的检测性能完全由k值决 定。记SFD检测性能达到最优时的k值为 k_{op} ,显然 $k_{op}应使得d_{SF}^2$ 取最大值,即

$$k_{\rm op} = \arg \max_{k} \{ d_{\rm SF}^2 \} \tag{13}$$

对式(1)所示的ZMGM2模型,根据式(13)求解 k_{op} 是极其困难的,但在 σ_{I} 较大而 ε_{I} 较小(这是符合 实际的非高斯背景的)时可得(具体推导略)

$$k_{\rm op} \approx \frac{2}{\sigma_{\rm B}}, \quad v(k_{\rm op}) \approx 0.37$$
 (14)

为更直观的表明k对检测性能的影响,令 σ_B 分 别为1,2,图3(a)、图3(b)分别给出了k与 d_{SF}^2 , v(k)的关系曲线(假设 $\theta^2 E_s = 1$)。从图3(a)可以明 显看出,在 $k = 2/\sigma_B$ 时 d_{SF}^2 的取值始终在其最大值 附近,偏差较小,同时结合图3(b)可以看出 $v(2/\sigma_B) \approx 0.37$ 。

 $记k = 2/\sigma_B$ 时的SFD为OP-SFD,其检验统计 量记为 $T_{OP-SF}(X)$,偏移系数记为 d_{OP-SF} ,将式 (14)分别代入式(10)、式(12)可得

$$T_{\rm OP-SF}(\mathbf{X}) \sim \begin{cases} N(0, \ 0.12E_{\rm s}) \ , & {\rm H}_{0} \\ N\left(\frac{0.26\theta E_{\rm s}}{\sigma_{\rm B}} \ , & 0.12E_{\rm s}\right) \ , & {\rm H}_{1} \\ \\ d_{\rm OP-SF}^{2} \approx \frac{0.55\theta^{2}E_{\rm s}}{\sigma_{\rm B}^{2}} \end{cases}$$
(15)

通过式(15)可知,对一个确知信号而言 $T_{OP-SF}(X)$ 的方差为常数,由式(11)可得OP-SFD的检测门限 $\eta = Q^{-1}(P_{\rm f})\sqrt{0.12E_{\rm s}}$,它仅由虚警概率确定,所 以OP-SFD具有恒虚警特性。

另外,由于 k_{op} 仅与 σ_B 有关,表明OP-SFD检测只需要估计一个参数 σ_B ,相比LOD不仅降低了

图 3 k对检测性能的影响

检测结构的复杂程度,提高了检测效率,同时还降低了PDF估计失配对检测性能的影响,提高了检测的稳健性。

6.2 非参量检测下的k值选取

OP-SFD虽然具有很多优良性质,比如结构简 单,性能稳健,易于恒虚警处理等,但为了得到其 检验统计量还需要估计一个参数 $\sigma_{\rm B}$,这在实际检 测过程中也会占用一定时间。而从图3(a)可以发 现,当 $k > k_{\rm op}$ 后, $d_{\rm SG}^2$ 会从最大值逐渐降低,并趋 向于一个稳定值,该稳定值与最大值相比并无显著 下降。因此,如果牺牲部分检测性能,直接选择一 个略大的合适的k值($k > k_{\rm op}$,比如令 $k \in [10, 20]$), 此时避免了对噪声背景的参数估计,从而进一步提 高了检测效率。

称这种固定k值的SFD为k-NP-SFD,它可认 为是一种非参量检测方法。但观察图3(b)可以发 现,固定k值时,v(k)的取值并不恒定,所以k-NP-SFD 并不具有恒虚警特性。综上分析可知,k-NP-SFD 虽然结构简单,检测效率高,但它是以牺牲部分检 测性能以及恒虚警特性为代价的。

7 仿真分析

假定确知信号为单频信号,频率为100 Hz,采 样频率为600 Hz,采样点数为300; PDF参数设置 为 $\sigma_{\rm B} = 1, \varepsilon_{\rm I} = 0.3, \sigma_{\rm I} = 6$ 。固定虚警概率 $P_{\rm f} = 10^{-3}$, 不同检测方法的性能对比如图4所示,图中的仿真 值是通过20000次蒙特卡洛实验得到。另外, LMD检测限幅阈值*C*是按照传统的10%方案选择 的,即抑制掉绝对值最大的前10%样本;OP-SFD 仿真时的门限是恒定的,即按 $\eta = Q^{-1}(P_{\rm f})\sqrt{0.12E_{\rm s}}$ 选取。

从图4可以看出,OP-SFD的仿真值与其理论 值吻合得很好,表明按照渐近高斯分布对SFD进行 检测性能分析是正确的,同时验证了OP-SFD的恒 虚警特性。另外还可以看出,OP-SFD的检测性能 接近LOD,远优于MF,这与理论分析结果是一 致的。

为进一步表明OP-SFD的稳健性,将其与 PDF估计失配情况下的LOD进行对比。PDF估计 失配有多种可能,仿真中保持 $\sigma_B = 1$ 不变,仅假设 ϵ_I , σ_I 估计失配,其真值为 $\epsilon_I = 0.3$, $\sigma_I = 6$,设定两 组估计失配值分别为 $\epsilon_I = 0.5$, $\sigma_I = 3$ 以及 $\epsilon_I = 0.1$, $\sigma_I = 9$,结果如图5所示。可以看出,当f(x)估计失 配时,LOD的检测性能会降低,其性能接近甚至 可能低于OP-SFD。

图 5 OP-SFD与估计失配下的LOD检测性能比较($\sigma_B = 1$)

对于匹配滤波而言,其变换函数 $g_{MF}(x) = x$ 与 f(x)无关,所以MF也可近似认为是非参量检测。 图6比较了10-NP-SFD与MF的检测性能。仿真时 保持 $\varepsilon_I = 0.3$ 不变,令 σ_B 分别取1,1.5,并始终令 $\sigma_I = 5\sigma_B$ 。可以明显看出10-NP-SFD的检测性能远 优于MF,并且接近OP-SFD,这表明当 $k > k_{op}$ 时,即使 d_{SF}^2 会从最大值逐渐降低,但其检测性能 并无明显下降,因此基于SFD进行非参量检测是可 行的,同时在6.1节中用2/ σ_B 近似代替 k_{op} 也是可 行的。

图 6 非参量检测性能对比($\varepsilon_{\rm I} = 0.3, \sigma_{\rm I} = 5\sigma_{\rm B}$)

8 结束语

本文对非高斯背景下的弱信号检测问题进行了 研究。首先采用ZMGM2模型对非高斯背景建模, 并在此基础上对常见的信号检测方法进行分析。其 次,提出了一种基于Sigmoid函数信号检测方法— SFD,系统分析了SFD的检测性能与参数*k*之间的 关系,证明了OP-SFD不仅检测性能最优,还具有 恒虚警特性。最后在SFD基础上进一步扩展得到其 非参量检测形式。理论与仿真都表明,SFD与局部 最优检测性能相近,但结构简单,稳健性好,并具 有恒虚警特性,而且基于SFD的非参量检测较匹配 滤波性能也有明显提高。

需要进一步说明的是,本文在ZMGM2模型基础上对SFD检测进行研究,但对于其它的非高斯模型,如Class A模型,广义高斯分布模型等,SFD检测方法同样是适用的,只不过最终得到*k*_{op}值不同罢了。而从实际的背景数据出发进行非高斯建模并应用SFD检测则是下一步的研究方向。

参考文献

[1] 刘旺锁, 王平波, 顾雪峰. 混合高斯参数估计的两种EM算法比较[J]. 声学技术, 2014, 33(6): 539-543.

LIU Wangsuo, WANG Pingbo, and GU Xuefeng. Comparison of two EM algorithms for Gaussian mixture parameter estimation[J]. Technical Acoustics, 2014, 33(6): 539-543.

- [2] 张杨勇, 刘勇. 低频段大气噪声及处理技术[J]. 舰船科学技术, 2008, 30(S1): 85-88.
 ZHANG Yangyong and LIU Yong. Atmospheric-noise at low frequency and its processing technique[J]. *Ship Science* and Technology, 2008, 30(S1): 85-88.
- [3] 沈锋, 徐定杰, 薛冰. 乘性噪声环境下基于局部最佳检测器的 伪码捕获方法[J]. 电子与信息学报, 2009, 31(8): 1952–1956.
 SHEN Feng, XU Dingjie, and XUE Bing. PN Code acquisition based on the locally optimum detector in multiplicative noise channels[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1952–1956.
- [4] 沈锋, 孙枫. 弱相关非高斯环境下基于局部最佳检测器的伪码 捕获方法[J]. 电子与信息学报, 2010, 32(4): 811-815.
 SHEN Feng and SUN Feng. PN Code acquisition based on the locally optimum detector in weakly dependent non-Gaussian impulsive channels[J]. Journal of Electronics & Information Technology, 2010, 32(4): 811-815.
- [5] 郑作虎,王首勇. 一种分数低阶局部最优目标检测方法[J]. 电子与信息学报, 2015, 37(9): 2158-2163.
 ZHENG Zuohu and WANG Shouyong. Target detection method based on fractional lower order locally optimum detector[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2158-2163.
- [6] LI Xutao, SUN Jun, WANG Shouyong, et al. Near-optimal detection with constant false alarm ratio in varying impulsive interference[J]. *IET Signal Processing*, 2013, 7(9): 824–832. doi: 10.1049/iet-spr.2013.0024.
- OH H and NAM H. Design and performance analysis of nonlinearity preprocessors in an impulsive noise environment[J]. *IEEE Transactions on Vehicular Technology*, 2017, 66(1): 364-376. doi: 10.1109/TVT. 2016.2547889.
- [8] MAHMOOD A, CHITRE M, and VISHNU H. Locally optimal inspired detection in snapping shrimp noise[J]. *IEEE Journal of Oceanic Engineering*, 2017, 42(4): 1049–1062. doi: 10.1109/JOE.2017.2731058.
- 李旭杰,赵鸿燕,杨成胡. α稳定噪声中基于正态变换的次优接收机[J].电路与系统学报,2012,17(3):94-97,14. doi: 10.3969/j.issn.1007-0249.2012.03.018.

LI Xuejie, ZHAO Hongyan, and YANG Chenghu. Normalized transform based sub-optimal receiver in α-stable impulsive environment[J]. *Journal of Circuits and Systems*, 2012, 17(3): 94–97, 14. doi: 10.3969/j.issn.1007-0249. 2012.03.018.

[10] 陈志毅,周穗华,冯士民.脉冲性大气噪声的高斯化滤波[J].数 据采集与处理,2013,28(6):784-789. doi: 10.3969/j.issn.1004-9037. 2013.06.013. CHEN Zhiyi, ZHOU Suihua, and FENG Shimin. Removal of impulsive atmosphere noise based on Gaussian filter[J]. *Journal of Data Acquisition and Processing*, 2013, 28(6): 784–789. doi: 10.3969/j.issn.1004-9037.2013.06.013.

- [11] 罗忠涛, 卢鹏, 张杨勇, 等. 大气噪声幅度分布与抑制处理分析[J]. 系统工程与电子技术, 2018, 40(7): 1443–1448.
 LUO Zhongtao, LU Peng, ZHANG Yangyong, et al. Analysis on amplitude distribution and suppression techniques of atmosphere noise[J]. Systems Engineering and Electronics, 2018, 40(7): 1443–1448.
- [12] ILIEV A, KYURKCHIEV N, and MARKOV S. On the approximation of the step function by some sigmoid functions[J]. *Mathematics and Computers in Simulation*, 2017, 133: 223–234. doi: 10.1016/j.matcom.2015.11.
- [13] 宋宇鲲,高晓航,张多利,等. Sigmoid函数的分段非线性拟合 法及其FPGA实现[J]. 电子技术应用, 2017, 43(8): 49–51. doi: 10.16157/j.issn.0258-7998.170569.
 SHONG Yukun, GAO Xiaohang, ZHANG Duoli, *et al.* The

piecewise non-linear approximation of the sigmoid function and its implementation in FPGA[J]. Application of *Electronic Technique*, 2017, 43(8): 49–51. doi: 10.16157/j. issn.0258-7998.170569.

[14] 王平波, 蔡志明. 有色非高斯背景下微弱信号的Rao有效绩检验[J]. 电子学报, 2007, 35(3): 534-538. doi: 10.3321/j.issn:0372-2112.2007.03.031.

WANG Pingbo and CAI Zhiming. The Rao efficient scores test of weak signals in colored non-Gaussian background[J]. *Acta Electronica Sinica*, 2007, 35(3): 534–538. doi: 10.3321/j. issn:0372-2112.2007.03.031.

- [15] 赵树杰,赵建勋. 信号检测与估计理论[M]. 2版. 北京: 电子工 业出版社, 2013: 58-59.
 ZHAO Shujie and ZHAO Jianxun. Signal Detection and Estimation Theory[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2013: 58-59.
- 代 振: 男, 1991年生, 博士生, 研究方向为水声信号与信息处理.
- 王平波: 男,1976年生,教授,博士生导师,研究方向为水声信号 与信息处理.
- 卫红凯:男,1984年生,博士,讲师,研究方向为水声信号与信息 处理.