基于循环前缀的相位编码 OFDM 雷达多普勒频移估计和补偿

赵晶晶 霍 凯 刘永祥* 杨小琪 (国防科学技术大学电子科学与工程学院 长沙 410073)

摘 要:相位编码正交频分复用(PC-OFDM)雷达是近年来新体制雷达研究热点之一。该雷达信号对正交多载频进 行相位调制,同时具有距离、多普勒高分辨。然而,PC-OFDM 雷达对多普勒频偏较为敏感,该文研究了 PC-OFDM 雷达基于循环前缀(CP)对多普勒频偏进行估计,并基于估计值对频偏进行补偿,再进行脉冲压缩。仿真实验证明, 该文方法能有效改善多普勒频偏所带来的1维距离像结构破坏和旁瓣抬升。 关键词:相位编码 OFDM 雷达;多载频;多普勒频偏估计;循环前缀 中图分类号: TN958 文献标识码: A 文章编号:1009-5896(2017)04-0938-07 DOI: 10.11999/JEIT160549

Cyclic Prefix Based Phase-coded OFDM Radar Doppler Offset Estimation and Compensation

ZHAO Jingjing HUO Kai LIU Yongxiang YANG Xiaoqi

(Department of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China)

Abstract: Phase-Coded Orthogonal Frequency Division Multiplexing (PC-OFDM) radar has drawn wide attention in high resolution radar application. This kind of radar signal transmits orthogonal sub-carriers phase-modulated by specific sequences and has range and Doppler high resolution at the same time. Considering its sensitivity to Doppler offset, this paper derives the pulse compression method of PC-OFDM radar, and based on Cyclic Prefix (CP), a Doppler offset estimation and compensation algorithm is proposed. Several simulations verify the effectiveness of the method in improving High Resolution Range Profile (HRRP) with Doppler offset. **Key words**: Phase-coded OFDM radar; Multi-carrier; Doppler offset estimation; Cyclic prefix

1 引言

正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术于1998年由Jankiraman 等人[1]由通信领域引入雷达应用中,并设计了名为"PANDORA"的雷达系统。随后,文献[2,3]分析了OFDM 雷达信号特性,特别对相位编码OFDM (Phase-Coded OFDM, PC-OFDM)雷达信号的研究尤为深入。Fink等人^[4]比较了PC-OFDM 信号和线性调频脉冲串(Chirp Sequence, CS)的参数及性能,PC-OFDM 信号在OFDM 体制天然的频率分集基础上添加了编码分集,具有波形设计灵活,抗干扰能力强,以及实现雷达通信一体化的潜力。PC-OFDM 雷达信号具有图钉型模糊函数,通过选

择合适的波形参数,该信号可同时具备距离和多普 勒高分辨,且两者之间不存在耦合,这是传统的线 性调频(Linear Frequency Modulation, LFM)信号 和步进频(Stepped Frequency, SF)信号所不具备的。 PC-OFDM 信号是一种多功能一体化信号,通过信 号处理,可实现窄带测速、宽带高分辨成像等功能。 然而,该信号对多普勒频移极为敏感的特点也成为 了其应用中的一大缺点,脉冲压缩中细微的多普勒 失配就会导致滤波器性能的大幅下降^[5,6]。从另一角 度来看,这是由于多普勒频偏破坏了 PC-OFDM 雷 达信号各子载频严格的正交关系,因此导致子载频 间串扰(Inter-Carrier Interference, ICI),从而引起 脉冲压缩峰值降低。因此,多普勒频偏估计与补 偿^[7-13]是 PC-OFDM 雷达回波处理的重要环节。

现有文献中,基于多载频互补相位编码(Multicarrier Complementary Phase Code, MCPC)脉冲 串信号,文献[7]提出了一种基于子载频分离的多普 勒频偏估计方法,该方法基于各子载频上多普勒频 偏间的线性关系对目标速度进行最小二乘估计,并 针对高速运动目标提出了相应的解多普勒模糊方

收稿日期: 2016-05-28; 改回日期: 2016-12-13; 网络出版: 2017-02-09 *通信作者: 刘永祥 lyx bible@sina.com

基金项目:国家自然科学基金(61501481,61422114),湖南省杰出青年基金(2015JJ1003)

Foundation Items: The National Natural Science Fundation of China (61501481, 61422114), The Natural Science Fundation for Distinguished Yong Scholars of Hunan Province (2015JJ1003)

法,该方法中最大不模糊速度为1/T_r,T_r为脉冲重 复周期(Pulse Repetition Interval, PRI),目标的最 大不模糊速度相对较小,对解模糊算法要求较高, 且目标易在多个脉冲间发生跨距离单元走动,需要 进行距离单元走动补偿。韩国的 Lim 等人¹⁸先利用 相关性能良好的序列对各子载频进行加权得到 OFDM 信号,并对单脉冲回波信号通过时域补零的 方法先进行频域过采样,对多普勒频偏进行粗估计 得到整数倍频偏,以整数倍频偏对信号进行补偿后 进行第2次估计得到多普勒频偏的精确估计值,该 方法扩大了多普勒频偏估计的最大不模糊范围,提 高了速度估计精度,然而频域过采样加大了载频分 离的难度,并且算法精度受速度大小影响明显。文 献[9]提出了一种距离、速度联合非线性最小二乘估 计算法,该方法针对加权 OFDM(Weighted-OFDM, WOFDM)脉冲串,他们还进一步推导了该算法的克 拉美罗下限(Cramer-Rao Lower Band, CRLB), 该 方法提高了距离估计精度,然而对速度估计精度并 无明显改善。多载频信号回波采样点可近似认为是 一组独立同分布的随机变量,本文通过在 PC-OFDM 雷达信号各码元内添加循环前缀(Cyclic Prefix, CP), 引入码元内采样点间相关性, 基于 PC-OFDM 单脉冲对多普勒频偏进行最大似然估计。因 此,无需对回波信号进行载频分离,算法复杂度大 大降低,且频偏引起的载频间串扰对算法精度无影 响。

本文从 PC-OFDM 雷达单散射点单脉冲回波信 号模型入手,为解决码元分段错位带来的码元间串 扰(Inter-Symbol Interference, ISI),在各码元前添 加 CP,并且基于 CP,对多普勒频偏进行最大似然 估计,利用估计结果进行频偏补偿,以改善多普勒 失配所引起的脉冲压缩性能下降的问题。

2 相位编码 OFDM 雷达信号模型

PC-OFDM 雷达同时发射多个子载频,子载频 间相互正交,且各子载频上均进行相位编码调制, 以获得较大的时间带宽积,发射信号复包络*s*(*t*)定 义为

$$s(t) = \exp\left(j2\pi f_0 t\right) x(t)$$

= $\exp\left(j2\pi f_0 t\right) \sum_{n=0}^{N-1} \sum_{k=0}^{K-1} w_n a_{n,k} \exp\left(j2\pi n\Delta f t\right)$
 $\cdot \operatorname{rect}\left(\frac{t-kt_{\rm b}}{t_{\rm b}} - \frac{1}{2}\right)$ (1)

其中, f_0 为发射中心频率,x(t)表示基带发射信号, N为子载频数,K为相位编码长度, w_n 为子载频加 权系数, $a_{n,k}$ 为相位编码, Δf 为相邻两子载频间的 间隔,信号带宽 $B = N\Delta f$,距离分辨率 $\Delta R = c/2B$, $c = 3 \times 10^8$ m/s为光速, t_b 为码元宽度,信号脉冲宽度相应地为 $T_p = Kt_b$ 。为满足 OFDM 条件,应当有 $\Delta f = 1/t_b$,因此时间带宽积 TB = NK。

对 PC-OFDM 雷达回波进行分码元处理,由于 目标具体位置未知,码元分段会出现错位,从而产 生码元间的串扰,这类似于通信系统中由于多径传 输而引起的 ISI^[14,15],这一问题通过在符号间添加 CP 得以解决, CP 为符号内采样点的循环重复,其 点数一般不能低于多径信道个数;在雷达系统中, CP 的时长 $t_{\rm G}$ 则由系统所要达到的最大不模糊测量 距离 $R_{\rm max}$ 决定^[4], $t_{\rm G} \ge 2R_{\rm max}/{\rm c}$ 。设置 $R_{\rm max} = {\rm c}t_{\rm b}$ /2,则 $t_{\rm G} = t_{\rm b}$,添加的循环前缀为相应码元信号所 有采样点的循环重复,发射脉冲脉冲宽度 $T_{\rm p} = K(t_{\rm G}$ + $t_{\rm b}) = 2Kt_{\rm b}$,单个脉冲所能达到的速度分辨率 $\Delta v = {\rm c}/2f_{\rm b}T_{\rm p}$,为了防止在一个脉冲内目标发生跨 距离单元走动,假设有 $v \le \Delta R/(2T_{\rm p}) = {\rm c}/(8NK)$ 。

假设雷达天线收发共用,单散射点目标雷达径 向匀速直线运动,其散射系数为 σ_0 ,瞬时径向距离 为 $R(t) = R_0 + v_0 t$, $R_0 = R(0)$ 为初始时刻径向距 离, v_0 为目标径向速度,为正表示远离雷达匀速运 动,反之亦然,则目标双程延迟为 $\tau(t) = 2R(t)/c$ = $\tau_0 + 2v_0 t/c$, $\tau_0 = 2R_0/c$ 。以采样间隔 $T_s = t_b/LN$ 对基带回波信号进行采样,有 $\tau_0 \approx p_0 T_p$ + $k_0 t_b + l_0 t_b / LN$, $p_0 = [\tau_0 / T_p], k_0 = [(\tau_0 - p_0 T_p) / t_b],$ $l_0 = [(\tau_0 - p_0 T_p - k_0 t_b) / T_s]$, [•]和[•]分别表示上、下 取整, $l_0 \in [0, LN - 1]$ 。距离窗设置为 [R_{sta}, R_{sta} + $cT_p / 2$],其中 $2R_{sta}/c = p_0 T_p + k_0 t_b$,则采样时刻 $t = p_0 T_p + k_0 t_b + 2k t_b + lt_b / LN$, $k=0,1,\cdots,K-1, l = 0,1,\cdots,2L-1$ 。采样信号结构示意图如图 1 所示,表 达式为

$$y_{\rm CP}\left(k,l\right)$$

$$\approx n(k,l) + \xi_0 \exp\left(-j2\pi\beta_0 \left(p_0 K + k_0 + 2k + \frac{l}{LN}\right)\right) \\ \cdot \sum_{n=0}^{N-1} w_n \exp\left(j2\pi n \frac{l-l_0}{LN}\right) \left\{a_{n,k} \operatorname{rect}\left(\frac{l-l_{0,k}}{2LN} - \frac{1}{2}\right) \\ + a_{n,k-1} \operatorname{rect}\left(\frac{l-l_{0,k-1}}{2LN} + \frac{1}{2}\right)\right\}$$
(2)

其中, n(k,l)为加性白噪声, $\xi_0 = \sigma_0 \exp(-j2\pi f_0 \tau_0)$ 表示对应于初始距离 R_0 的雷达散射截面; 一般情况 下,发射波形参数满足窄带假设($B \ll f_0$),各子载 频上多普勒偏移间的差值可忽略不计,且单个码元 内的包络延迟差可以忽略不计,因此以 β_0 表示一个 码元间隔内的多普勒频偏, $\beta_0 = 2v_0 f_0 t_0 / c_0$ 。当 $|\beta_0|$

(4)

图 1 PC-OFDM 雷达接收机采样信号分码元示意图

 ≤ 0.5 时,即 $|v_0| \leq cB/(4Nf_0)$ 时,测速不存在模糊, 因此最大不模糊速度 $v_{max} = min \{c/(8NK), cB/(4Nf_0)\}$;各码元对应的延迟点数 $l_{0,k} = l_0 + LN(p_0K + k_0/2 + k)4v_0/c$,当 $v_0 \leq v_{max}$,目标不会发生跨距离单元走动,始终有 $l_{0,k} \in [0, LN - 1]$,满足目标运动始终在一个不模糊距离区间内,不再有 ISI 的影响。

3 Doppler 频偏估计及补偿

3.1 基于循环前缀的 Doppler 频偏估计

以 { wa_k } = { $w_0a_{0,k}, w_1a_{1,k}, \dots, w_{N-1}a_{N-1,k}$ } 表示第 k 个码元内子载频加权系数与相位编码乘积的序 列。{ wa_k } 各元素间独立同分布,基带发射信号x(t)可视为这些随机变量的线性组合,当子载频数 N足 够大时,根据中心极限定理,每个 PC-OFDM 码元 可近似视为复高斯随机信号,且实部虚部相互独立。

如图 1 中所示,由于添加 CP,第 0 个分段码元 中区域 $I_{0,0}$ 及 $I_{1,0}$ 两区域内相距 LN 的对应采样点间 具有极强的相关性^[16],并有 $\exp(-j2\pi\beta_0)$ 的相差,区 域位置由第 0 个码元对应时延 $l_{0,0}$ 所决定;以后各码 元分段也以此类推,相关区域为 $I_{0,k} = [l_{0,k}, LN - 1]$ 及 $I_{1,k} = [l_{0,k} + LN, 2LN - 1] 。利用这种相关性和其余$ $区域内采样点的随机性,可对 <math>l_{0,k}$ 和 β_0 进行联合最大 似然估计。

由时刻 $p_0T_p + k_0t_b$ 开始, 取第 k 个分段码元内的 2LN 个采样点作为一个观测总体 $\mathbf{R}_k = \{y_{CP}(k,0), \cdots, y_{CP}(k,2LN-1)\} \triangleq \{r_k(0), \cdots, r_k(2LN-1)\}$ 。由于添加 CP, \mathbf{R}_k 内各元素间存在式(3)所示的相关性。

$$E(r_{k}(l)r_{k}^{*}(l+m))$$

$$=\begin{cases} \sigma_{r_{k}}^{2}, & m=0\\ |\xi_{0}|^{2}\sigma_{s}^{2}\exp(-j2\pi\beta_{0}), & l\in I_{0,k}, \ m=LN \ (3)\\ 0, & \nexists \dot{\Xi} \end{cases}$$

其中, $\sigma_{\eta_{k}}^{2} = E\{|r_{k}|^{2}\}, \sigma_{s}^{2} = E\{|s|^{2}\}, \sigma_{n}^{2} = E\{|n|^{2}\},$ 分别表示接收回波、发射信号和加性白噪声的功率, σ_{s}^{2} 可以根据发射信号求得,通过归一化 OFDM 各 子载频加权系数,可归一化 $\sigma_s^2 = 1$ 。当m = 0时有 $E\{|r|^2\} \triangleq \sigma_{r_k}^2, \sigma_{r_k}^2$ 可通过对整段雷达采样数据计算 均值 $\sigma_{r_k}^2 \approx \sigma_y^2 = E\{|y_{CP}|^2\}$ 近似求得。

进一步地,我们可以根据雷达信噪比 $\rho = (\sigma_y^2 - \sigma_n^2) / \sigma_n^2$ 近似估计出 $|\hat{\xi}_0|^2 = \rho \sigma_y^2 / (1+\rho) = \rho_1 \sigma_y^2$,其中, $\rho_1 = \rho / (1+\rho)$ 。代入式(3)中得到

$$E(r_{k}(l)r_{k}^{*}(l+m)) = \begin{cases} \sigma_{y}^{2}, & m = 0\\ \rho_{1}\sigma_{y}^{2}\exp(-j2\pi\beta_{0}), & l \in I_{0,k}, \ m = LN\\ 0 & \text{If } \vec{E} \end{cases}$$

设 $\varphi_{k} = \left[l_{0,k}, \beta_{0}\right]^{\mathrm{T}}$ 为待估计量,似然函数 $L_{k}(\varphi_{k})$ = $\ln f\left(\mathbf{R}_{k} | \varphi_{k}\right), f\left(\mathbf{R}_{k} | \varphi_{k}\right)$ 为给定 φ_{k} 条件下,观测总体 \mathbf{R}_{k} 的联合条件概率密度函数。经推导, $L_{k}(\varphi_{k})$ 与待估计量 φ_{k} 相关的部分可表达为

$$L_{k}^{'}\left(\left|\boldsymbol{\varphi}_{k}\right.\right) = \alpha_{1}\left[\left|\gamma_{k}\left(l_{0,k}\right)\right|\cos\left(\arg\left(\gamma_{k}\left(l_{0,k}\right)\right) - 2\pi\beta_{0}\right)\right.\\\left.\left.-\frac{\rho_{1}}{2}\eta_{k}\left(l_{0,k}\right)\right] + \left(LN - l_{0,k}\right)\alpha_{2}\right.$$
(5)

其中,

$$\gamma_{k}\left(l_{0,k}\right) = \sum_{l=l_{0,k}}^{LN-1} r_{k}\left(l\right) r_{k}^{*}\left(l+LN\right)$$
$$\eta_{k}\left(l_{0,k}\right) = \sum_{l=l_{0,k}}^{LN-1} \left(\left|r_{k}\left(l\right)\right|^{2} + \left|r_{k}\left(l+LN\right)\right|^{2}\right)$$

$$\alpha_{1} = \frac{2\rho_{1}}{\sigma_{y}^{2}(1-\rho_{1}^{2})}, \ \alpha_{2} = -\ln(1-\rho_{1}^{2}) \, \text{为两个常数量}.$$

下面,对待估计量 $\varphi_k = \left[l_{0,k}, \beta_0 \right]^{\mathrm{T}}$ 逐项进行估计, 首先式(5)对 β_0 求偏导并令其等于 0,得到

$$\begin{aligned} \frac{\partial L_{k}^{'}\left(\boldsymbol{\varphi}_{k}\right)}{\partial\beta_{0}} &= -2\pi \left|\gamma_{k}\left(l_{0,k}\right)\right| \\ &\cdot \sin\left(\arg\left(\gamma_{k}\left(l_{0,k}\right)\right) - 2\pi\beta_{0}\right) = 0 \qquad (6) \end{aligned}$$

因此,
$$\beta_0$$
的最大似然估计值 $\hat{\beta}_{0,k}$ 为 $l_{0,k}$ 的函数
$$\hat{\beta}_{0,k} = n + \frac{1}{2\pi} \arg\left(\gamma_k\left(l_{0,k}\right)\right)$$
(7)

其中, $n \in \mathbb{Z}$ 。在不产生模糊的前提下, $\mathbb{Q} n = 0$, $\hat{\beta}_{0,k} = \arg(\gamma_k(l_{0,k}))/2\pi$, 将 $\hat{\beta}_{0,k}$ 代入式(5), 有

$$L'_{k}\left(l_{0,k},\widehat{\beta}_{0,k}\right) = \alpha_{1}\left[\left|\gamma_{k}\left(l_{0,k}\right)\right| - \frac{\rho_{1}}{2}\eta_{k}\left(l_{0,k}\right)\right] - \left(LN - l_{0,k}\right)\alpha_{2}$$

$$(8)$$

式(8)仅与 $l_{0,k}$ 有关。对式(8)寻找峰值位置,即得 $l_{0,k}$ 的最大似然估计:

$$\hat{l}_{0,k} = \arg_{l_{0,k}} \left\{ \max L'_k \left(l_{0,k}, \hat{\beta}_{0,k} \right) \right\}$$
(9)

再将 $\hat{l}_{0,k}$ 代入式(7)得到 $\hat{\beta}_{0,k}$,并对K个观测总体求均值,最终的多普勒频偏估计值 $\hat{\beta}_0$ 为

$$\widehat{\beta}_{0} = E_{k} \left(\frac{1}{2\pi} \arg \left(\gamma_{k} \left(\widehat{l}_{0,k} \right) \right) \right)$$
(10)

下面对算法复杂度进行分析,对每一个观测总体 **R**_k 而言,式(8)共须 3LN 次乘法及 2LN 次加法,因此 K个观测总体共需 3KLN 次乘法,整个多普勒频偏估计算法的计算复杂度为 O(KLN),远远低于传统的基于 FFT 子载频分离的多普勒频偏估计算法。

3.2 Doppler 频偏补偿及相位编码 OFDM 雷达脉冲 压缩

采样信号第 k 个分段码元去除 CP 内的 LN 个采 样点后,剩余有效采样点表达式为

$$y_{\text{eff}}(k,l) = \xi_0 \exp\left(-j2\pi\beta_0 \left(p_0 K + k_0 + 2k + \frac{l}{LN}\right)\right) \\ \cdot \sum_{n=0}^{N-1} w_n a_{n,k} \exp\left(j2\pi n \frac{l-l_0}{LN}\right) + n(k,l) \quad (11)$$

其中, $k = 0, 1, \dots, K - 1, l = LN, LN + 1, \dots, 2LN - 1$ 。 设置补偿系数 $\lambda(k, l)$ 为

$$\lambda(k,l) = \exp\left(j2\pi\widehat{\beta}_0\left(p_0K + k_0 + 2k + \frac{l}{LN}\right)\right) \quad (12)$$

 $y_{\text{eff}}(k,l)$ 各采样点分别乘上补偿系数 $\lambda(k,l)$,则剩余的多普勒频偏项为

$$\exp\left(-j2\pi\left(\beta_{0}-\widehat{\beta}_{0}\right)\left(p_{0}K+k_{0}+2k+\frac{l}{LN}\right)\right)$$
$$\approx\exp\left(-j2\pi\Delta\beta_{0}\left(p_{0}K+k_{0}+2k+1\right)\right)\triangleq\mu\left(k\right)\left(13\right)$$

其中, $\Delta\beta_0 = \beta_0 - \hat{\beta}_0$,并且忽略了补偿后多普勒频 率在一个码元内的差异。

补偿后的采样信号表达式为

$$y_{\text{eff}}^{'}(k,l) = \xi_{0}\mu(k)\sum_{n=0}^{N-1} w_{n}a_{n,k} \exp\left(j2\pi n\frac{l-l_{0}}{LN}\right) + n(k,l) = \xi_{0}\mu(k)x(k,l-l_{0}) + n(k,l) (14)$$

式(14)为发射信号第 k个码元的 l_0 点位移,因此式(14)对 l 作 LN点 DFT 并取前 N个点得到

$$Y(k,q) = \xi_0 \mu(k) w_q a_{q,k} \exp\left(-j2\pi q \frac{l_0}{LN}\right) + N(k,q) (15)$$

其中, N(k,q) 为n(k,l)的 LN 点 DFT 的前 N 个点, 各子载频回波信号得以分离。将各子载频上回波信 号Y(k,q)与对应编码序列 $\{w_q a_{q,k}\}_{1\times K}$ 作互相关,做 一级脉冲压缩得到窄带脉冲压缩结果。

$$\operatorname{CRRP}(m,q) = \xi_0 \left| w_q \right|^2 R_\mu(m,q)$$
$$\cdot \exp\left(-j2\pi q \, \frac{l_0}{LN}\right) + R_N(m,q) \quad (16)$$

其中, $R_{\mu}(m,q)$ 表示 $\mu(k)\{a_{q,k}\}$ 与原始相位编码序列 $\{a_{q,k}\}_{1\times K}$ 的互相关函数, $R_N(m,q)$ 表示 N(k,q)与 $\{w_q a_{q,k}\}_{1\times K}$ 的互相关, m为时延, 表示 CRRP 所在 粗分辨距离单元序号。在每个粗分辨距离单元内, 对式(16)中参数 q 作 LN 点 IDFT, 综合各子载频上 窄带脉冲压缩结果, 进行 2 级脉冲压缩得到 1 维距 离像

 $\operatorname{HRRP}(mLN+l)$

$$= \xi_0 \sum_{q=0}^{N-1} |w_q|^2 R_\mu(m,q) \exp\left(j2\pi q \frac{l-l_0}{LN}\right) + \sum_{q=0}^{N-1} R_N(m,q) \exp\left(j2\pi q \frac{l}{LN}\right)$$
(17)

一个高分辨距离单元为 $R_{\rm h} = ct_b / 2LN$ 。上述基于 CP的PC-OFDM 雷达多普勒频移估计和补偿算法 流程图如图 2 所示。

4 数值仿真实验及分析

4.1 基于循环前缀的 Doppler 频偏估计

仿真采用的 PC-OFDM 信号,相位编码集采用 Logistic 混沌量化四相编码,Logistic 混沌迭代表达 式为

$$l_{k+1} = \lambda \left(\frac{1}{4} - l_k^2\right) - \frac{1}{2}$$
(18)

为达到混沌状态,分岔参数 λ 应在[3.569946…, 4]之间,这里我们选取 $\lambda = 4$,混沌吸引域为 [-0.5,0.5],迭代初始值为[-0.5,0.5]间的随机数。经 过量化编码^[17],编码相位 θ_k 的表达式为

图 2 基于循环前缀的相位编码 OFDM 雷达多普勒频移估计和补偿算法流程图

$$\theta_{k} = P(l_{k}) = \begin{cases} 2\pi \frac{\text{mod}_{4}\left\{\left[4\left(l_{k}+0.5\right)\right]\right\}}{4}, & -0.5 \le l_{k} < 0\\ 2\pi \frac{\text{mod}_{4}\left\{\left[4\left(-l_{k}+1\right)\right]\right\}}{4}, & 0 \le l_{k} < 0.5 \end{cases}$$
(19)

其中, mod₄ {•} 表示对 4 取余。经蒙特卡洛仿真, 量化四相编码概率分布如图 3 所示,图 3(a)为一随 机初始条件进行 10⁶ 次迭代得到混沌序列量化编码 4 个相位频数直方图,图 3(b)为10⁶ 个随机产生的初 始条件经过 100 次迭代,混沌序列数值量化编码 4 个相位频数直方图,综合图 3(a),图 3(b),我们发 现,经过式(19)所示的量化编码,差值为π的两个相 位概率相等,这意味着 Logistic 混沌量化四相编码 集的实部、虚部均值均为零。图 3(c)为两个初始条 件随机(不相等)、迭代次数为10⁶ 的混沌量化序列的 联合分布直方图,由图 3(c)可知,两个不同初始条 件形成的量化编码独立同分布,2 维联合概率分布 为1维概率分布的乘积。

假设各子载频加权系数为 $w_n = 1/\sqrt{N}$,利用 Logistic 混沌量化四相编码集对各子载频进行调制, 第k个发射码元信号采样点实部、虚部分别为

$$\Re \left\{ x(k,l) \right\} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left[\Re \left\{ a_{n,k} \right\} \cos \left(2\pi n \frac{l}{LN} \right) \right] - \Im \left\{ a_{n,k} \right\} \sin \left(2\pi n \frac{l}{LN} \right) \right] \Im \left\{ x(k,l) \right\} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left[\Re \left\{ a_{n,k} \right\} \sin \left(2\pi n \frac{l}{LN} \right) \right]$$
(20)
$$+ \Im \left\{ a_{n,k} \right\} \cos \left(2\pi n \frac{l}{LN} \right) \right]$$

其中, $\{a_{0,k}, a_{1,k}, \dots, a_{N-1,k}\}_{N \times 1}$ 可被视为一组独立同分 布的随机变量, 当 N 足够大时, 认为 x(k,l) 服从零 均值复高斯分布。

4.2 速度估计精度

仿真实验中,发射载频 $f_0 = 10$ GHz,固定信号

带宽 B = 100 MHz,对应的距离分辨率 ΔR =1.5 m; 子载频数 N 设置为 64,128 和 256,则对应的子载频 间隔 Δf 分别为 1562500 Hz, 781250 Hz 和 390625 Hz,码元宽度 t_b 分别为 0.64 μs, 1.28 μs 和 2.56 μs,最大不模糊距离为 96 m, 192 m 和 384 m; 编 码长度 K 设置为 8 和 32;过采样率 L 设置为 1 和 4, 一个高分辨距离单元 $R_{\rm h}$ 分别为 1.500 m 和 0.375 m; 子载频加权系数为归一化系数 $w_n = 1/\sqrt{N}$,相位编 码采用 4.1 节中的 Logistic 混沌四相编码。

单散射点目标后向散射系数 $\sigma_0 = 1$,与雷达间 初始径向距离为 $R_0 = 50$ km,径向速度为 $v_0 = 2250$ m/s,则对应一个码元间隔内的多普勒偏移 $\beta_0 = 2v_0 f_0 t_b / c$,分别为 $\beta_0 = 0.0962$, $\beta_0 = 0.1924$, $\beta_0 = 0.3848$ 。定义均方误差为

$$\text{RMSE} = \sqrt{\text{mean} \left[\left(\hat{v} - v_0 \right)^2 \right]}$$
(21)

下面分别研究信噪比ρ及目标径向速度 v₀ 对速度估计 RMSE 的影响。

图 4 所示为固定目标径向速度 v_0 ,不同 PC-OFDM 雷达参数下,速度估计 RMSE 随信噪比 ρ 变化的曲线。随着 ρ 提高,估计精度均有所提高;增加子载频数N,在固定带宽条件下, Δf 减小,相对应 t_0 增大,则 β_0 值提高,且随着N增加,各码元更近似于高斯白噪声信号,因此 RMSE 随之降低;增加编码长度K,混沌编码的随机性随之提高,且随着观测样本的增多,噪声对估计的影响降低,RMSE 有所降低;提高采样频率 f_s ,采样误差减小,RMSE 进一步降低。

固定 $\rho = 5$ dB 不变, 径向速度 v_0 在 [-3000, 3000] m/s 区间内变化, PC-OFDM 雷达参数设置不 变,得到速度估计 RMSE 随着 v_0 变化的曲线如图 5 所示。在不产生模糊的情况下, v_0 对估计精度几乎 没有影响, RMSE 随着 N, K, L 的增大而降低; 最大不模糊速度 $|v_{\text{max}}| = \min \{c/8(NK), cB/(4Nf_0)\},$ 而 N = 256 时, $v_{\text{max}} = 2929.7$ m/s, 因此 v_0 为 -3000 m/s 或 3000 m/s 时,多普勒频移 $|\beta_0| > 0.5$,

图 3 Logistic 混沌量化四相编码概率分布

频偏估计产生模糊,速度估计精度大幅度下降,则 需要进一步的解模糊算法进行处理。

现有文献中一类算法利用 PC-OFDM 单脉冲进 行多普勒频偏估计,一般而言,目标的多普勒频移 大大小于载频间的间隔,因此为了能够在频谱上体 现这种频移量,必须通过后端补零的方式等效延长 信号时宽,进行频域过采样,这种方法加大了载频 分离的难度,并且算法精度受速度大小影响明显。 而本文算法基于添加 CP 带来的码元内部分采样点 间特殊的相关性对频偏进行最大似然估计,无需对 回波信号进行载频分离,一方面降低了计算量,另 一方面,在不产生模糊的前提下,速度大小(即多普 勒频偏的大小)对估计精度的影响较小;本文方法的 缺点在于忽略了各个子载频上的多普勒频偏差异, 而近似认为一个码元内各子载频上的多普勒频偏 $\beta_n \approx \beta_0 = 2v_0 f_0 f_o/c$,算法精度相较于载频分离频偏 估计算法有所降低。

现有文献中另一类基于脉冲串进行频偏估计的 算法,由于相对较大的脉冲重复周期(Pulse Repetition Interval, PRI),导致目标易在多个脉冲 间发生跨距离单元走动,首先需要进行跨距离单元 走动补偿,且目标的最大不模糊速度相对较小,对 相应的解模糊算法要求较高。本文算法一般目标运 动速度情况下,只会在编码长度较大时,由于采样 误差,导致目标在不同码元分段间产生一位跨距离 单元走动,而多普勒频偏估计先分别对各个码元分 段进行,再求取均值,因此跨距离单元走动对最终 的估计精度影响较小。

4.3 多普勒频偏补偿效果

图 6 中,分别为径向速度 $v_0 = 255$ m/s, $v_0 = 2250$ m/s的目标,比较未补偿和经过 Doppler 频偏补偿 1 维距离像与静止目标 1 维距离像。设置子载频数 N = 256,编码长度 K = 32。未经补偿的 1 维距离像中,目标径向速度引起的多普勒频偏引起解码过程中的 ICI,进而影响脉冲压缩性能。当径向速度较低时,会抬高 1 维距离像旁瓣;而当径向速度较高时,则完全改变了 1 维距离像结构。经过多普勒频偏补偿后,ICI 在很大程度上被消除,补偿后的目标 1 维距离像与静止目标 1 维距离像旁瓣水平相近。

5 结束语

本文将通信中循环前缀的概念引入 PC-OFDM 雷达领域,提出了一种基于循环前缀的多普勒频偏 估计和补偿算法。该方法通过添加循环前缀引入观 测信号采样点间的相关性,对多普勒频偏进行最大 似然估计,并利用估计值先对各码元回波信号进行 频偏补偿,再进行解码和两级脉冲压缩。算法具有

较高的估计精度和较低的算法复杂度,大大改善了 目标运动所引起的 PC-OFDM 雷达1维距离像旁瓣 抬高和结构改变。计算机仿真实验子载频数、编码 长度和过采样率对算法精度的影响。本文算法仅仅 考虑单散射点目标回波情况,如何适用于多散射点 场景是下一步研究重点。

参考文献

- JANKIRAMAN M, WESSELS B J, and VAN GENDEREN P. Design of a multifrequency FMCW radar[C]. The 28th European Microwave Conference, Amsterdam, 1998: 548–589. doi: 10.1109/EUMA.1998.338053.
- LEVANON N. Multifrequency complementary phase-coded radar signal[J]. *IEE Proceedings-Radar, Sonar and Navigation*, 2000, 147(6): 276–284. doi: 10.1049/ip-rsn 20000734.
- [3] LEVANON N. Train of diverse multifrequency radar pulses
 [C]. Proceedings of the IEEE International Radar Conference, Atlanta, GA, 2001: 93–98. doi: 10.1109/NRC.2001.922958.
- [4] FINK J and JONDRAL F K. Comparison of OFDM radar and chirp sequence radar[C]. 16th International Radar Symposium, Dresden, Germany, 2015: 315–320. doi: 10.1109/ IRS.2015.7226369.
- [5] 赵志欣,万显荣,谢锐,等.载波频偏对正交频分复用波形外 辐射源雷达性能的研究[J].电子与信息学报,2013,35(4): 871-876.doi: 10.3724/SP.J.1146.2012.01011.
 ZHAO Zhixin, WAN Xianrong, XIE Rui, et al. Impact of carrier frequency offset on passive bistatic radar with orthogonal frequency division multiplexing waveform[J]. Journal of Electronics & Information Technology, 2013, 35(4): 871-876. doi: 10.3724/SP.J.1146.2012.01011.
- [6] LELLOUCH G, MISHRA A, and INGGS M. Impact of the Doppler modulation on the range and Doppler processing in OFDM radar[C]. IEEE Radar Conference, Cincinnati, 2014: 803–808. doi: 10.1109/GEMCCON.2015.7386829.
- [7] DENG Bin, SUN Bin, WEI Xizhang, et al. A velocity estimation method for multi carrier phase-coded radar[C].
 2nd International Conference on Information Management and Engineering, Chengdu, China, 2010, 4: 227–230. doi: 10.1109/ICIME.2010.5478067.
- [8] LIM Jinsoo, KIM Sungrae, and SHIN Dongjoon. Two-step Doppler estimation based on intercarrier interference mitigation for OFDM radar[J]. *IEEE Antennas and Wireless Propagation Letters*, 2015, 14: 1726–1729. doi: 10.1109/ LAWP.2015.2421054.
- [9] TURLAPATY Anish, JIN Yuanwei, and XU Yang. Range and velocity estimation of radar targets by weighted OFDM modulation[C]. IEEE Radar Conference, Cincimnati, 2014: 1358–1362.

- KASHIN V A and MAVRYCHEV E A. Target velocity estimation in OFDM radar based on subspace approaches[C].
 14th International Radar Symposium, Dresden, 2013: 1061–1066.
- [11] GU Wenkun, WANG Dangwei, and MA Xiaoyan. High speed moving target detection using distributed OFDM-MIMO phased radar[C]. 12th International Conference on Signal Processing, Hangzhou, China, 2014: 2087–2091. doi: 10.1109/ ICOSP.2014.7015362.
- [12] 王杰,梁兴东,丁赤飚,等. OFDM SAR 多普勒补偿方法研究
 [J]. 电子与信息学报, 2013, 35(12): 3037-3040. doi: 10.3724/ SP.J.1146.2012.01547.
 WANG Jie, LIANG Xingdong, DING Chibiao, *et al.* Investigation on the Doppler compensation in OFDM SAR[J]. *Journal of Electronics & Information Technology*, 2013, 35(12): 3037-3040. doi: 10.3724/SP.J.1146.2012.01547.
- [13] LIU Yongxiang, ZHANG Shuanghui, ZHU Dekang, et al. A novel speed compensation method for ISAR imaging with low SNR[J]. Sensor, 2015, 15(8): 18402–18415. doi: 10.3390/ s150818402.
- [14] ZHANG Tianxian and XIA Xianggen. OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. *IEEE Transactions on Geoscience and Remote Sensing*, 2015, 53(1): 394-404. doi: 10.1109/TGRS.2014.2322813.
- [15] CAO Yunhe and XIA Xianggen. IRCI-free MIMO-OFDM SAR using circularly shifted Zadoff- Chu sequences[J]. *IEEE Geoscience and Remote Sensing Letters*, 2015, 12(5): 1126–1130. doi: 10.1109/LGRS.2014.2385693.
- BEEK VAN DE J J, SANDELL M, ISAKSSON M, et al. Low complex frame synchronization in OFDM systems[C].
 Proceedings of the IEEE International Coference on Universal Personal Communications, 1995: 982–986. doi: 10.1109/ICUPC.1995.497156.
- [17] 霍凯,赵晶晶. 一种基于 Bernoulli 混沌的四相 OFDM 雷达信 号设计方法[J]. 雷达学报, 2016, 5(4): 361-372. doi: 10.12000/ JR16050.

HUO Kai and ZHAO Jingjing. A design method of fourphase-coded OFDM radar signal based on Bernoulli chaos[J]. *Journal of Radars*, 2016, 5(4): 361–372. doi: 10.12000/ JR16050.

- 赵晶晶: 女,1990年生,博士生,研究方向为空间信息获取与处理技术.
- 霍 凯: 男,1983年生,讲师,研究方向为雷达波形设计与信号 处理.
- 刘永祥: 男,1976年生,教授,博士生导师,研究方向为空间目 标探测与识别、微动特性、雷达成像等.