基于 MODPSO 算法的 FPRM 电路多约束极性优化方法

符 强¹⁰² 汪鵬君^{*1} 童 楠²⁰ 王铭波¹¹ 张会红¹¹ ¹⁰(宁波大学电路与系统研究所 宁波 315211) ²⁰(宁波大学科学技术学院 宁波 315212)

摘要:为求解较大规模 FPRM 逻辑电路中多约束条件下的极性优化问题,该文提出一种基于多目标离散粒子群优化(Multi-Objective Discrete Particle Swarm Optimization, MODPSO)算法的求解方法。首先针对 FPRM 电路极性设计需要满足延时短、面积小的多约束要求,构建了多目标决策模型。然后结合极性转换算法和 MODPSO 算法,对电路进行最优极性搜索,以获取电路延时和面积的 Pareto 最优解集。最后利用 17 个 MCNC Benchmark 电路进行测试,并将 MODPSO 算法与 DPSO 算法、NSGA-II 算法进行实验对比,结果验证了算法的有效性。 关键词: FPRM 逻辑电路;延时与面积优化;极性搜索;Pareto;多目标离散粒子群算法 中图分类号:TN79+1;TP391.72 文献标识码:A 文章编号:1009-5896(2017)03-0717-07 DOI: 10.11999/JEIT160458

Multi-constrained Polarity Optimization of Large-scale FPRM Circuits Based on Multi-objective Discrete Particle Swarm Optimization

FU Qiang⁰² WANG Pengjun⁰ TONG Nan² WANG Mingbo⁰ ZHANG Huihong⁰ ⁽¹⁾(Institute of Circuits and Systems, Ningbo University, Ningbo 315211, China) ⁽²⁾(College of Science and Technology, Ningbo University, Ningbo 315212, China)

Abstract: For multi-constrained polarity optimization of large-scale FPRM circuits, a Multi-Objective Discrete Particle Swarm Optimization (MODPSO) algorithm is proposed. Firstly, the multi-objective decision model is established according to the delay-area trade-off of large-scale FPRM circuits. Secondly, combined with tabular technique and MODPSO, the best polarities of delay and area are searched for large-scale FPRM circuits, to obtain the Pareto optimal set for delay and area. Finally, the algorithm MODPSO is compared with the algorithm DPSO and NSGA-II on MCNC Benchmarks with PLA format, and the results verify the effectiveness of the MODPSO. **Key words**: FPRM circuits; Delay-area trade-off; Polarity search; Pareto; Multi-Objective Discrete Particle Swarm Optimization (MODPSO)

1 引言

电路逻辑函数既可表示为基于 AND/OR/NOT 运算的 Boolean 逻辑,也可表示为基于 AND/XOR 或者 XNOR/OR 运算的 RM(Reed-Muller)逻辑。与 Boolean 逻辑电路相比,RM 逻辑电路具有较好的可 测性,并且在实现奇偶校验、算术逻辑、通信等功

能时具有结构与性能上的显著优势^[1-3],因而得到 越来越广泛的关注。

固定极性 RM(Fixed Polarity RM, FPRM)是一 种常用的 RM 逻辑规范表达式,其展开式中的变量 以原变量或反变量的形式出现。对于 n 个输入变量 的逻辑函数,有 2ⁿ 个固定极性,对应 2ⁿ 种 FPRM 展开式。在 FPRM 电路中,不同的极性对应不同的 逻辑展开式,相应的电路结构及性能也不相同。因 此必须在 FPRM 极性空间中搜索到最优的电路极 性,才能获取最优的电路延时、面积及功耗等性能 指标。

FPRM 电路的逻辑设计面向多目标的并行优化,需要综合考虑延时、面积及功耗等各方面性能,从而提升电路的整体性能,因此 FPRM 电路极性优化问题实质上是一个多约束条件下的综合优化问题。目前常见的求解方法中,是通过加权函数法将

收稿日期: 2016-05-05; 改回日期: 2016-10-18; 网络出版: 2016-12-20 *通信作者: 汪鹏君 wangpengjun@nbu.edu.cn

基金项目:国家自然科学基金(61306041, 61234002),"十二五"浙 江省高校重点学科—计算机应用技术,浙江省教育厅科研项目 (Y201326770),宁波市自然科学基金(2014A610069, 2015A610107) Foundation Items: The National Natural Science Foundation of China (61306041, 61234002), The Twelfth Five-Year Plan of Zhejiang Province Key Discipline (Computer Application Technology), The Scientific Research Fund of Zhejiang Provincial Education Department (Y201326770), The Ningbo Natural Science Foundation (2014A610069, 2015A610107)

FPRM 电路多目标优化问题转化为单目标问题进行 处理,以达到多个性能指标并行优化的目的。如文 献[4]采用固定权系数,利用目标加权的方法提出求 解 FPRM 电路延时和面积优化问题的方法。文献 [5,6]分别采用固定权重及可变权重研究了 FPRM 电 路面积与功耗的综合优化问题。然而加权函数法存 在几个问题:(1)对权重系数敏感,不同的权重设置 对结果影响较为明显。(2)权重选择严重依赖先验知 识,较难接近真实的需求折中。(3)难于获取全部的 Pareto 最优解。往往只能获取一个或者少数最优解, 弱化了优化结果的决策支持能力。因此需要更为有 效的方法来实现 FPRM 电路逻辑设计中的多目标 综合优化要求。

多目标智能算法近些年发展较快,并在求解多 目标优化问题中得到有效应用^[7-11]。此类方法避免 了权重设置,利用 Pareto 准则确定当前解的非支配 关系,从中选择最优个体,引导其余个体进行目标 寻优,并通过迭代优化确定适应多个目标函数的最 优解集。其中多目标粒子群算法^[12]与其他同类算法 相比,具有结构简单,易于实现,收敛速度快,强 鲁棒性等优点。

延时与面积均为 RM 逻辑电路设计过程中的关键因素,对电路综合性能起着重要作用。本文针对 FPRM 电路极性设计中同时考虑延时与面积约束条件的综合优化问题,提出一种基于 Pareto 优化准则的多目标离散粒子群算法(MODPSO),算法中的粒子代表决定 FPRM 电路延时与面积的电路极性。利用列表技术进行极性转换,然后通过 MODPSO 算法搜索电路的 Pareto 最优极性解集,实现电路延时与面积优化设计。最后将对较大规模 MCNC Benchmark 电路进行测试以验证算法有效性。

2 FPRM 电路延时与面积优化模型

2.1 极性转换

在 FPRM 逻辑中,任一n变量逻辑函数 $f(x_{n-1}, x_{n-2}, \dots, x_0)$ 具有 2^n 个不同极性,对应 2^n 个不同的 FPRM 展开式。p极性下的 FPRM 展开式可表示为

$$f^{p}(x_{n-1}, x_{n-2}, \cdots, x_{0}) = \bigoplus_{j=0}^{2^{n-1}} b_{j} \pi_{j}$$
(1)

其中, $\oplus \Sigma$ 为 XOR 运算; π_j 为与项, 可表示为 ($\dot{x}_{n-1}\dot{x}_{n-2}\cdots\dot{x}_j\cdots\dot{x}_0$); b_j 为与项系数, $\exists b_j \in \{0,1\}$; 下标 j为与项序数, 用二进制数表示为($j_{n-1}j_{n-2}\cdots$ $j_i\cdots j_0$); p为极性, 用二进制数表示为($p_{n-1}p_{n-2}\cdots$ $p_i\cdots p_0$)。变量 \dot{x}_i 在与项中表达形式为

$$\dot{x}_{i} = \begin{cases} 1, & j_{i} = 0 \\ x_{i}, & j_{i} = 1, \ p_{i} = 0 \\ \overline{x}_{i}, & j_{i} = 1, \ p_{i} = 1 \end{cases}$$
(2)

列表转换技术^[13]是一种易于编程实现的快速极 性转换算法,适用于含任意变量数的逻辑函数,常 被用于 FPRM 展开式的极性转换。实现从极性 *p* 转 换到极性 *q* 的列表转换技术算法描述如表 1 所示。

表1 从极性 p 转换到极性 q 的列表转换技术

BEGIN:
初始化, 定义集合 M, N , 并将极性 $p $ 和 $q $ 分别记为 ($p_{n-1}p_{n-2}$ …
$p_i \cdots p_0) i (q_{n-1} q_{n-2} \cdots q_i \cdots q_0)$;
将 <i>p</i> 极 性 下 与 项 序 数 <i>j</i> 代 表 与 项 , 记 为
$(j_{n-1}j_{n-2}\cdots j_i\cdots j_0)$, 并将 j 放入集合 M 中;
FOR $i = n - 1$ TO 0
IF $p_i \neq q_i$ THEN
与项 $(j_{n-1}j_{n-2}\cdots j_{i+1}1j_{i-1}\cdots j_0)$ 生成新与项 $(j_{n-1}j_{n-2}\cdots$
$j_{i+1}0j_{i-1}\cdots j_0$),并存于集合 N 中;
依次将集合 N 中所有新与项与极性 p 中的与项进行比较,
IF 新与项和极性 p 中的与项相同 THEN
在集合 M 中删除与该新与项相同的对应与项;
ELSE
将该新与项添加到集合 M中;
END

2.2 延时与面积估算模型

在进行电路延时与面积估算之前,先通过代数 法化简 FPRM 表达式,以简化电路结构,利于模型 估算优化。代数化简式可描述为

$$\pi \oplus \pi \tau = \pi \overline{\tau} \tag{3}$$

其中, π , $\pi\tau$ 为 FPRM 表达式中任意两个与项。 π 称 为 $\pi\tau$ 的子项, $\pi\tau$ 称为 π 的父项, $\pi\overline{\tau}$ 称为混合项。 设有 n 变量 FPRM 表达式, k 为其中某一与项所含 变量数, a 和 b 为其中任意两个与项,则 FPRM 电 路化简算法^[14]流程如表 2 所示。

表 2 FPRM 电路化简算法

BEGIN:
将与项表示成二进制形式,按 k 的大小对与项进行分类:根据
组合式 C_n^k ,从小到大依次将对应与项放入集合 0~集合 n 中;
FOR $i = n$ TO 2 && $j = n - 1$ TO 1
IF 集合 i 和集合 j 为非空 THEN
将集合 i 和 j 中最小与项赋值给 a 及 b ;
IF 与项 a 和 b 满足式(3)所示化简条件 THEN
删除此两与项,生成混合项,并将集合 i 和
j中的下一与项赋值给 $a $ 和 b ;
ELSE
将集合 j 中的下一与项赋值给 b ;
IF 集合 0 中仍有与项 THEN
将其与当前任一与项进行化简运算。
END

在电路逻辑级设计中一般采用单位延时模型估计电路延时。将电路的每个多输入门分解成二输入 AND 门或 XOR 门组合,并将二输入门的传输延时 大小定义为一个单位时间,则可利用二输入门总数 表示电路的面积。而二输入门在关键路径的传输延 时之和表示电路延时。二输入门 *j* 的输出延迟可表 示为^[15]

$$t_j = 1 + \max\left(t_{j_a}, t_{j_b}\right) \tag{4}$$

其中, $t_{j_a} \oplus t_{j_b}$ 为二输入门 j 的输入延迟, t_j 为 二输入门 j 的输出延迟, $j \in U$ 。

对于化简后的 FPRM 电路,通过比较多输入门的不同分解方式以找到最短的关键路径延时。设 $T = T_1 \cdot T_2 \cdot \dots \cdot T_i \cdot \dots \cdot T_c$ 为一个 FPRM 展开式, T_i 为 第i个向量的子展开式,c为逻辑分解后的终端节点 向量个数。令原始输入信号的延时为 0,则 FPRM 电路的延迟分解算法可以描述如表 3 所示。

表 3 FPRM 电路的延时分解算法

BEGIN:

FOR i=1 TO c

利用类Huffman法对多输入AND门进行分解得到对应输出延时;

以与门输出延时作为多输入 XOR 门的输入延时,利用类 Huffman 法对多输入 XOR 门进行分解,将获取的输出信号延时记为 t_i;

记 { t_1, t_2, \dots, t_c }为 T的输入信号延迟,再次利用类 Huffman 法 得到 T的输出信号延迟;

END

化简及分解后的电路网络表示为 O(U), U为二 输入门集合。将 U中的二输入 AND 门总数记为 m_{sc} , 二输入 XOR 门总数记为 m_{\oplus} ;并将其中关键路径上 的二输入门总数记为 m_{key} 。则 FPRM 电路的延时与 面积估算模型可表示为

$$D(p) = \sum_{j=1}^{m_{key}} t_j \tag{5}$$

 $A(p) = m_{\&} + m_{\oplus} \tag{6}$

其中, *p*为电路极性; *D*(*p*)进行电路延时估算,表示在极性 *p*的 FPRM 电路中,关键路径上所有二输入门的传输延时之和; *A*(*p*)进行电路面积估算,表示极性 *p*的 FPRM 电路中所有二输入门的总数目。

3 多目标离散粒子群优化(MODPSO)

粒子群算法^[16]借鉴了鸟群觅食机制,结合粒子 自身认知与最优群体提供的社会信息来促进粒子间 的信息交流与合作,能迅速定位并捕捉目标。

为利用粒子群算法搜索电路最优极性, 对算法

进行了离散化,设计了粒子编码方案、粒子更新机制,并构建了实现电路延时与面积综合优化的 MODPSO 方法,以获取 Pareto 最优极性解集。

3.1 多目标决策函数

对 FPRM 电路而言,电路延时长短与面积大小 均由电路极性决定。选择合适的电路极性,才能获 取延时与面积的综合优化效果。加权函数法为电路 延时与面积模型进行权重设定,利用单目标求解方 法寻找最优极性。但是面向不同的用户需求,单一 的权重设置较难满足电路设计的多样性要求。同时, 面积与延时不一定表现出相同的变化趋势:面积最 小的极性下电路的延时有可能较长,而延时最短的 极性下电路的面积可能较大。因此选用 Pareto 优化 准则作为粒子群体的进化依据,得出多目标决策函 数为

$$F(X_i) = \min\left\{D(X_i), A(X_i)\right\}$$
(7)

其中, *D*(*X_i*) 和 *A*(*X_i*) 分别为第*i* 个粒子 *X_i* 对应的 FPRM 电路延时与面积。

设有两个粒子 X_A和 X_B,使得式(8)所示不等式 组成立,且其中至少有一个严格不等式成立,则称 粒子 X_A优于粒子 X_B,即 X_A严格支配 X_B。

$$\begin{array}{c}
D(X_A) \le D(X_B) \\
A(X_A) \le A(X_B)
\end{array}$$
(8)

若粒子 X_A 不被其他任何粒子支配,则 X_A 为非 劣粒子,即为满足延时与面积目标的 Pareto 最优粒 子之一,而 Pareto 最优解集则是所有 Pareto 最优 粒子的集合。

3.2 粒子编码与更新

在求解 FPRM 电路延时和面积优化问题时, MODPSO 中的搜索空间维度对应于 FPRM 电路 的变量数。粒子位置对应于电路的极性,最优粒子 位置gbest则表示 FPRM 电路优化搜索中的最优极 性。

假设粒子种群中的粒子总数为 Population, 搜 索空间为 d 维, 随机初始化每一个粒子的位置和速 度。记第 i 个粒子的位置为 $X_i = (x_{i0}, x_{i1}, ..., x_{ij}, ..., x_{id-1}), x_{ij} \in \{0,1\}$; 其飞行速度为 $V_i = (v_{i0}, v_{i1}, ..., v_{ij}, ..., v_{ij}, ..., v_{id-1})$ 。个体最优位置为 pbest_i = (pbest_{i0}, pbest_{i1}, ..., pbest_{ij}, ..., pbest_{id-1}); 粒子种群最优位 置为 gbest = (gbest_0, gbest_1, ..., gbest_j, ..., gbest_{d-1})。 由于在离散空间进行最优电路极性搜索, 因此需要 将算法进行离散化处理。可得粒子速度与位置更新 式为

$$v_{ij}(t+1) = w(t) \cdot v_{ij}(t) + c_1 \cdot \operatorname{rand1}(\cdot) \cdot (\operatorname{pbest}_{ij} - x_{ij}(t)) + c_2 \cdot \operatorname{rand2}(\cdot) \cdot (\operatorname{gbest}_j - x_{ij}(t))$$
(9)

$$x_{ij}(t+1) = \begin{cases} 1, \text{ rand3}(\cdot) < 1/(1+\exp(-v_{ij}(t+1))) \\ 0, \text{ rand3}(\cdot) > 1/(1+\exp(-v_{ij}(t+1))) \end{cases} (10)$$

其中, t 为当前进化代数; rand1(·), rand2(·)和 rand3(·)是(0,1)范围内的随机数; $c_1 \pi c_2$ 为加速因 子; w 是线性递减的惯性权重。 $1/(1 + \exp(-v_{ij}$ (t+1)))为 sigmoid 函数。当速度 v_{ij} 较大时, x_{ij} 取 1的概率较大; 而速度 v_{ij} 较小时, x_{ij} 取 0的概率较 大。

设置外部存储的最优档案库以保存当前进化代数中得到的 Pareto 最优解,并在下一代进化时从中选择 gbest 带领粒子种群寻优。为保证粒子的多样性要求,最优档案库的粒子按照拥挤程度排序,并利用轮盘赌方式进行全局最优粒子选择。

预先设定最优档案库规模大小,当其中数量较 少时,可将新求得的最优粒子直接放入最优档案库 中;而当最优档案库中的粒子个数达到或超出预定 规模要求时,则需要分析新最优粒子与最优档案库 中原有粒子的支配关系,留下其中更优的部分。

为保证粒子的可控性,对粒子进行速度约束, 如式(11)所示。

$$v_{ij}(t+1) = \begin{cases} -v_{\max}, & v_{ij}(t+1) < -v_{\max} \\ v_{\max}, & v_{ij}(t+1) > v_{\max} \end{cases}$$
(11)

3.3 Pareto 最优极性解集搜索

综合以上对 FPRM 延时与面积估算模型、列表 转换技术,以及 MODPSO 算法设计的分析,提出 面向 FPRM 电路延时与面积综合优化问题的 Pareto 最优极性解集搜索方案如表 4 所示。

4 实验与分析

本文实验均在 Windows XP 操作系统下,通过 VC6.0 编译。程序的硬件环境为 Inter Pentium CPU G645(2.9 GHz) 1.82 GB RAM。测试电路随机取用 17 个 PLA 格式的 MCNC Benchmark 电路。

首先将 MODPSO 算法与利用加权函数法的 DPSO 算法^[4]进行了实验对比,两种算法各运行 20 次。参数设置为: 粒子总数 Population=40,迭代 进化次数 Iteration=120。加速因子 $c_1 = c_2 = 2$;惯性 权重 $w_{\min} = 0.4, w_{\max} = 0.9$; $v_{\max} = 4$, DPSO 算法中 的优化权重值为 0.5。

表 5 给出了两种算法各自运行 Benchmark 电路获取的电路延时与面积。其中,"名称"为测试电路的名称,"最好"、"最差"分别为 MODPSO 算法和 DPSO 算法 20 次运行所得最好值与最差值,

"Del_A"和"Del_D" 分别为 MODPSO 算法和 DPSO 算法 20 次运行结果的面积方差与延时方差。

表 4 FPRM 电路延时与面积综合优化问题的 Pareto 最优极性解集搜索方案

```
BEGIN
```

初始化:	随机设置种群粒子和最优粒子状态,并计算每个粒子的
	延时和面积;
	计算种群中粒子间的非支配关系(Domination),并将非
	劣粒子抽出组成外部最优档案库(rep);
	在 rep 中根据非劣粒子的延时与面积大小生成网格,并
	判断粒子在网格中的位置;
FOR a	i=1 TO Iteration /*Iteration 为迭代进化次数*/
在 rep	o中,通过轮盘赌的方式寻找全局最优粒子;
利用台	全局最优粒子对种群中的粒子进行速度和位置的更新,并
计算更	更新后粒子的延时和面积;
根据到	延时和面积的适应度值更新粒子的个体最优值;
将 rep	和更新后种群一同计算各个粒子之间的非支配关系;
IF re	ep中的粒子数 <rep_num *="" rep_num="" td="" 为最优档案库规<=""></rep_num>
模*/	
	将新非劣粒子放入 rep 中;
ELSE	
	按照非支配关系重新构建大小为 rep_num 的新 rep;
在新 r	cep 中根据粒子的延时与面积大小重新生成网格, 通过网

格判断个体在网格中的位置;

输出 rep 中粒子的延时与面积;

END

从表 5 数据可以看出,当电路中的延时与面积 具有相同变化趋势,Pareto 最优解集中只有唯一解 时,DPSO 有机会求取满足最优延时与面积的极性 结构,但由于文献中的 DPSO 算法将延时与面积权 重均固定为 0.5,并不适合每个具有不同特征的电 路,在电路 in5,s444,x9dn 测试中所求得最优解精 度不如 MODPSO 算法,并在大部分电路测试中表 现出较大波动性,最差解质量明显劣于 MODPSO 算法。MODPSO 算法不需要进行权重设置,且针 对各种类型的电路均能获得较好结果。同时其 20 次 运行结果的方差小,具有较强的鲁棒性。尤其对于 电路 a12,由于该电路延时与面积具有不同的变化 趋势,Pareto 最优解集中的非劣解不唯一,DPSO 算法无法求得全部 Pareto 最优解,而 MODPSO 算 法能够稳健获得 Pareto 最优解集。

为进一步验证 MODPSO 算法在求解 FPRM 电路延时和面积问题的有效性和可靠性,将算法与NSGA-II 算法^[10]进行实验比对。针对每个测试电路,MODPSO 算法与 NSGA-II 算法分别实验 20 次,结果如表 6 所示。其中"次数" 表示在 20 次测试中,获得最优解的总次数;"时间(s)"为 20 次测试所花费的总时间。

从表 6 中可以看出, 在每个测试电路的实验结

Benchmark		MODPSO							DF				
名称	变量数	最好		最差				最好		最差			
		面积	延时	面积	延时	Del_A	Del_D	面积	延时	面积	延时	Del_A	Del_D
gary	15	534	10	534	10	0	0	534	10	763	11	53.63	0.41
a12	16	(11,4),(7,5)		(11,4),(7,5)		-	-	11	4	12	5	0.97	0.37
b2	16	3404	13	3404	13	0	0	3404	13	4213	13	220.10	0
t481	16	33	6	33	6	0	0	33	6	40	6	1.44	0
t2	17	49	7	49	7	0	0	49	7	64	7	4.79	0
in2	19	492	10	626	10	29.96	0	492	10	638	10	43.50	0
mm4a	20	72	7	72	7	0	0	72	7	72	7	0	0
t1	21	18	5	18	5	0	0	18	5	18	5	0	0
in5	24	239	9	291	9	11.63	0	308	9	656	10	94.44	0.41
ttt2	24	37	6	37	6	0	0	37	6	39	6	0.75	0
s382	25	283	9	283	9	0	0	283	9	453	10	48.23	0.51
s444	25	107	8	107	8	0	0	120	8	275	9	40.17	0.51
s526	25	36	6	36	6	0	0	36	6	64	7	9.04	0.47
bc0	26	313	9	313	9	0	0	313	9	472	10	42.36	0.51
bed	26	199	8	199	8	0	0	199	8	333	9	39.22	0.31
nexp	26	55	6	55	6	0	0	55	6	120	8	20.47	0.49
x9dn	27	76	7	76	7	0	0	94	8	186	8	23.05	0

表 5 MODPSO 与 DPSO 算法最优极性对应的延时与面积

表 6 MODPSO 与 NSGA-II 算法最优极性对应的延时与面积

Benchmark			MOI	OPSO				NSGA-II						
名称	变量数	最好		最差				最好		最差				
		面积	延时	面积	延时	次数	时间(s)	面积	延时	面积	延时	次数	时间(s)	
gary	15	534	10	534	10	20	270.08	534	10	679	11	10	540.13	
a12	16	(11,4),(7,5)		(11,4),(7,5)		20	4.08	(11, 4), (7, 5)		12	5	11	17.18	
b2	16	3404	13	3404	13	20	1204.95	3404	13	4102	13	7	3921.26	
t481	16	33	6	33	6	20	4.34	33	6	43	6	5	54.06	
t2	17	49	7	49	7	20	12.87	49	7	64	7	14	64.64	
in2	19	492	10	626	10	19	82.75	492	10	687	10	6	511.81	
mm4a	20	72	7	72	7	20	4.89	72	7	91	7	17	44.20	
t1	21	18	5	18	5	20	3.86	18	5	18	5	18	36.98	
in5	24	239	9	291	9	19	74.25	239	9	473	10	2	335.74	
ttt2	24	37	6	37	6	20	8.98	37	6	54	7	15	119.11	
s382	25	283	9	283	9	20	112.53	283	9	487	10	9	706.25	
s444	25	107	8	107	8	20	17.26	107	8	226	9	16	152.70	
s526	25	36	6	36	6	20	9.67	36	6	51	7	16	121.08	
bc0	26	313	9	313	9	20	41.12	313	9	370	10	7	312.03	
bed	26	199	8	199	8	20	87.51	199	8	361	10	11	231.86	
nexp	26	55	6	55	6	20	41.62	55	6	229	9	5	134.41	
x9dn	27	76	7	76	7	20	6.96	76	7	151	8	1	63.42	

果中,NSGA-II 算法均有机会获取最优解,但在 20 次实验结果中表现出较大差异性:17个电路测试中 求得最优解的平均概率仅为 49.68%,且对于 a12 电 路,有 9 次测试未能获得 Pareto 最优解集;而 MODPSO 算法相比 NSGA-II 算法具有明显更优的 求解性能,在 15个电路测试中均能 20次全部获取 最优解,且在 17个电路测试中求得最优解的平均概 率达到 99.4%,表现出良好的算法鲁棒能力。

在时间花费上,NSGA-II 算法在全部电路测试 上花费的总时间为 7366.86 s; 而 MODPSO 算法花 费的总时间为 1987.76 s, 仅为前者的 26.98%。

就整体测试结果而言, MODPSO 算法相比 NSGA-II 算法, 17 个测试电路的延时优化率平均值 为 13.22%, 面积优化率平均值为 2.51%。延时优化 率及面积优化率可描述为

面积优化率=(OA1-OA2)/OA2 (13)

其中 OD1, OD2 分别为 NSGA-II 算法、MODPSO 算法 20 次优化结果获取的延时平均值, OA1, OA2 分别为 NSGA-II 算法、MODPSO 算法 20 次优化结

图 1 电路数据集面积进化曲线

参考文献

- MONREIRO C, TAKAHASHI Y, and SEKINE T. Lowpower secure S-box circuit using charge-sharing symmetric adiabatic logic for advanced encryption standard hardware design[J]. *IET Circuits, Devices & Systems*, 2015, 9(5): 362–369.
- [2] 王伦耀,夏银水,陈偕雄.逻辑函数的双逻辑综合与优化[J]. 计算机辅助设计与图形学学报,2012,24(7):961-967.
 WANG Lunyao, XIA Yinshui, and CHEN Xiexiong. Logic synthesis and optimization based on dual logic[J]. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(7): 961-967.
- [3] 卜登立, 江建慧. 基于混合多值离散粒子群优化的混合极性
 Reed-Muller 最小化算法[J]. 电子与信息学报, 2013, 35(2):
 361-367. doi: 10.3724/SP.J.1146.2012.00790.
 BU Dengli and JIANG Jianhui. Hybrid multi-valued discrete

果获取的面积平均值。

将 17 个测试电路的 20 次优化结果之和作为最 终测试结果,分析两种算法的面积与延时迭代进化 过程,如图 1,图 2 所示。

从图 1,图 2 中可以看出, NSGA-II 算法进化 速度慢,而且较早陷入早熟收敛;而 MODPSO 算 法在进化早期就表现更优的搜索效率,具有更强的 全局搜索能力。

5 结束语

针对 FPRM 电路极性设计中的多目标优化问题,本文提出了一种基于 MODPSO 算法的极性搜索方法,利用 Pareto 优化准则进行多目标条件下的 粒子优劣性评价,以获取延时和面积综合优化的电 路最优极性解集。对 17 个 PLA 格式的 MCNC Benchmark 电路进行了测试,实验结果表明, MODPSO 算法避免了加权函数法对权重设置的主 观性,能获取更加准确、完整的 Pareto 最优解,提 高了电路辅助设计能力。而与加权函数法及 NSGA-II 算法相比,MODPSO 算法在求解精度、速度及 鲁棒性等方面均具有更好的优化效率。

图 2 电路数据集延时进化曲线

particle Swarm optimization algorithm for mixed-polarity Reed-Muller minimization[J]. *Journal of Electronics & Information Technology*, 2013, 35(2): 361–367. doi: 10.3724/ SP.J.1146.2012.00790.

- [4] 王振海, 汪鹏君, 俞海珍, 等. 基于 PSO 算法的 FPRM 电路 延时和面积优化[J]. 电路与系统学报, 2012, 17(5): 75-80.
 WANG Zhenhai, WANG Pengjun, YU Haizhen, *et al.* Delay and area optimization for FPRM circuits based on PSO algorithm[J]. *Journal of Circuits and Systems*, 2012, 17(5): 75-80.
- [5] WANG Pengjun, LI Kangping, and ZHANG Huihong. PMGA and its application in area and power optimization for ternary FPRM circuit[J]. Journal of Semiconductors, 2016, 37(1): 015007.
- [6] DAS A and PRADHAN S N. Thermal aware FPRM based AND-XOR network synthesis of logic circuits[C]. IEEE 2nd

International Conference on Recent Trends in Information System(ReTIS). IEEE, Kolkata, India, 2015: 497–502. doi: 10.1109/ReTIS.2015.7232930.

 [7] 姜兴龙,梁广,刘会杰,等. 一种新型的低轨存储转发通信星 座设计方法[J]. 电子与信息学报, 2014, 36(3): 676-682. doi: 10.3724/SP.J.1146.2013.00551.

JIANG Xinglong, LIANG Guang, LIU Huijie, et al. A new design method of store and forward LEO communication satellite constellation[J]. Journal of Electronics & Information Technology, 2014, 36(3): 676–682. doi: 10.3724/ SP.J.1146.2013.00551.

- [8] ESFAHANI I J, YOO C K, KALOGIROU SOTERIS A, et al. An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system[J]. Renewable Energy, 2016, 91: 233–248.
- [9] SRIVASTAV A and AGRAWAL S. Multi-objective optimization of hybrid backorder inventory model[J]. Expert Systems with Applications, 2016, 51: 76–84.
- [10] MARTINEZ-VARGAS A, DOMINGUEZ-GUERRERO J, ANDRADE Á G, et al. Application of NSGA-II algorithm to the spectrum assignment problem in spectrum sharing networks[J]. Applied Soft Computing, 2016, 39: 188–198.
- [11] YUAN Y, XU H, WANG B, et al. A new dominance relation-based evolutionary algorithm for many-objective optimization[J]. *IEEE Transactions on Evolutionary Computation*, 2016, 20(1): 16–37.
- [12] HOAI BACH NGUYEN, XUE Bing, LIU Lü, et al. New mechanism for archive maintenance in PSO-based multiobjective feature selection[J]. Soft Computing, 2016: 1–20. doi:

10.1007/s00500-016-2128-8.

- [13] JASSANI B A Al, URQUHART N, and ALMAINI A E A. Manipulation and optimization techniques for Boolean logic[J]. *IET Computers and Digital Techniques*, 2010, 4(3): 227–239.
- [14] 汪鹏君, 王振海, 陈耀武, 等. 固定极性 Reed-Muller 电路最 优延时极性搜索[J]. 浙江大学学报: 工学版, 2013, 47(2): 361-366. doi: 10.3785/j.issn.1008-973X.2013.02.026.
 WANG Pengjun, WANG Zhenhai, CHEN Yaowu, et al. Searching the best polarity for fixed polarity Reed-Muller circuits based on delay model[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(2): 361-366. doi: 10.3785/j.issn.1008-973X. 2013.02.026.
- [15] CORTADELLA J. Timing-driven logic bi-decomposition[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(6): 675–685.
- [16] AMINBAKHSH S and SONMEZ R. Discrete particle swarm optimization method for the large-scale discrete time-cost trade-off problem[J]. *Expert Systems with Applications*, 2016, 51: 177–185.
- 符 强: 男,1975年生,讲师,博士生,研究方向为低功耗集成 电路理论及优化设计.
- 汪鹏君: 男,1966年生,博士,教授,博士生导师,研究方向为 多值逻辑和低功耗集成电路理论及优化设计.
- 童 楠: 女,1981年生,讲师,硕士,研究方向为多目标智能优 化方法.
- 王铭波: 男,1994年生,硕士生,研究方向为低功耗集成电路理 论及优化设计.