基于脉冲跨周期调制的 DC-DC 变换器自适应电压调节技术

王东俊 罗 萍^{*} 彭宣霖 甄少伟 贺雅娟 (电子科技大学电子薄膜与集成器件国家重点实验室 成都 610054)

摘要: 为实现减小数字电路的供电电压来降低其能量消耗的目的,该文提出基于脉冲跨周期调制(PSM)的 DC-DC 变换器自适应电压调节(AVS)技术。AVS 技术通过追踪和探测关键路径复制(CPR)的延迟时间自适应地调节数字电路的供电电压。同时,具有自适应占空比的 PSM 调制模式(APSM)被用来改善轻负载下变换器输出电压的纹波和效率。实验结果显示,当负载工作频率在 30~150 MHz 范围内变化时,输出电压在 0.6~1.5 V 之间稳定输出。和传统的固定工作电压相比,该文设计的 DC-DC 变换器最大可节省 83%的能耗。 关键词: DC-DC 变换器;自适应电压调节;脉冲跨周期调制;关键路径复制;自适应占空比中图分类号: TN624 文献标识码: A 文章编号: 1009-5896(2017)01-0213-08 DOI: 10.11999/JEIT160283

Adaptive Voltage Scaling Technique for DC-DC Converter Based on Pulse Skip Modulation

WANG Dongjun LUO Ping PENG Xuanlin ZHEN Shaowei HE Yajuan (State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China)

Abstract: In order to decrease energy consumption of digital circuits by reducing the supply voltage, an Adaptive Voltage Scaling (AVS) for DC-DC converter based on Pulse Skip Modulation (PSM) is proposed. The AVS technique can scale supply voltage adaptively by probing and tracking the Critical Path Replica (CPR) delay time. To improve the output voltage ripple and efficiency of converter especially in light load, the PSM with Adaptive ratio duty (APSM) also is used. The experimental results show that the output voltage is well regulated from $0.6 \sim 1.5$ V when the operation frequency of load varies within the range of $30 \sim 150$ MHz. The maximum energy saving of 83% is obtained with the proposed converter compared to the traditional fixed voltage.

Key words: DC-DC converter; Adaptive Voltage Scaling (AVS); Pulse Skip Modulation (PSM); Critical Path Replica (CPR); Adaptive duty ratio

1 引言

片上系统(SoC)受益于集成电路制造工艺的快速发展而经历了高速发展阶段。因此在单一芯片上集成了越来越多的功能,而芯片的尺寸却在持续减小,造成电子系统的能耗密度急剧增加。而能量消耗却是评估电子器件性能的重要指标之一。所以,能量消耗成了以电池作为供电系统的便携式、穿戴式和可移植医疗电子等新兴电子产品的重要问题^[1,2]。动态电压调整(DVS)作为降低数字电路能耗和提高变换器效率一种非常有效的方式而被广泛用

来约束数字电路的能耗。但是 DVS 是一种需要提前 预置查找表(LUT),工作在开环状态的电压频率调 节技术^[3-5]。因此,为了保证数字电路在最坏的工 艺和环境下正常工作,预留了一定的供电电压裕度。 然而过度保守的电压裕度导致了数字电路能耗和性 能的损失,同时这种极端的工艺和工作环境也很少 出现。所以,从能耗和应用的观点出发,过保守的 电压裕度正变得不再被接受^[6]。

为了减小一点最坏情况下的电压裕度,关键路 径复制(CPR)技术被广泛用在具有闭环调节特性的 自适应电压调节(AVS)技术中。由于在工作环境和 频率的多种组合下,CPR 能提供最接近数字电路实 际性能的指标,因而数字电路的供电电压能够被自 适应地调节到最小值^[5-8]。在现代深亚微米技术下, 由反相器组成的简化了的复制关键路径变的越来越 不可靠,因其在不同的工艺角或工作状态之间会发

收稿日期: 2016-03-28; 改回日期: 2016-08-30; 网络出版: 2016-10-17 *通信作者: 罗萍 pingl@uestc.edu.cn

基金项目: 国家自然科学基金(61274027), 国家自然科学基金青年 基金(61404025)

Foundation Items: The National Natural Science Foundation of China (61274027), The National Natural Science Youth Foundation of China (61404025)

生较大变化¹⁰。事实上,在关键路径延时的测量中, 由于 CPR 和关键路径之间结构的差异引起的误差 十分微小,而在不同的工艺和工作环境下由片内互 连引起的延迟误差却急剧增加。基于这些原因,一 种能够复制任何产品的关键路径而无需定制的通用 延迟线(UDL)结构被提出¹⁰¹。实验显示关键路径的 延时主要由 NMOS 和 PMOS 组成的具有"2:2"双 堆叠的电路结构引起,故 UDL 由具有双堆叠的电路 结构组成。但是 UDL 的控制逻辑十分复杂,因此消 耗了一部分因减小电压裕度而节约的能量,且在变 换器的负载较轻时更加显著。

现在,随着低压低功耗技术的发展,数字电路的能耗在不断减小,因此 DC-DC 变换器的负载变的越来越轻,每个开关周期内变换器输出电压的调节和能量传递的角度不再接受较大的输出电压纹波^[12]。当变换器工作在断续导通模式(DCM)或负载较轻时,脉冲跨周期调制(PSM)模式被用来改善变换器的效率。PSM 是一种改善变换器转换效率的新奇的控制模式^[13,14]。在 PSM 控制下,变换器具有较小的谐波和较快的响应速度,但是其输出电压纹波有点大^[15-17]。为了改善输出电压纹波和转换效率,本文提出了一种具有自适应占空比的 PSM 调制模式(APSM)。

基于 PSM DC-DC 变换器的 AVS 技术,通过 AVS 和 CPR 技术降低数字电路的工作电压并消除 一定的电压裕度,最终实现降低数字电路能耗的目 标。本文提出的 APSM 控制模式改善了变换器的电 压纹波和转换效率。本文分析了 DC-DC 变换器的 电路结构和 APSM 控制模式的工作原理,通过仿真 验证了所提出的电路结构能显著降低数字电路能 耗,实验结果显示了输出电压对频率变化的跟随和 APSM 控制模式对电压纹波的改善。

2 DC-DC 变换器整体电路结构和工作原理 分析

图 1 显示了本文提出的具有 AVS 功能的 DC-DC 变换器整体结构框图。由于变换器工作在 DCM 模式下,因此变换器的电路结构由于不需要环路补 偿而变得简单且容易实现^[18]。图 1 中主要包括功率 级、驱动电路、负载、数控振荡器(DCO)和 AVS 控 制电路。AVS 控制电路主要由控制逻辑算法和 APSM 控制器组成,其中控制逻辑算法通过数字设 计方法实现。负载可以是数字信号处理(DSP)、便 携式产品和医疗电子等数字电路,其等效电阻为 *R*_{Load}。DC-DC 变换器的输出电压 *V*_{OUT} 作为负载的

工作电压, DCO 产生的时钟 DCLK 作为负载的工作时钟。APSM 控制器中的延时检测电路能够检测时钟 DCLK 通过 CPR 的延时 $T_{\rm D}$ 和电压 $V_{\rm OUT}$ 之间的关系,并输出调压信号 $D_{\rm SIG}$ 。当负载以某一频率 $f_{\rm DCLK}$ 工作时,如果输出电压 $V_{\rm OUT}$ 小于使负载能正常工作的最小电压 $V_{\rm DDMIN}$,则延迟时间 $T_{\rm D}$ 大于时钟 DCLK 的周期 $T_{\rm DCLK}$,同时调压信号 $D_{\rm SIG}$ 为低电平。相反,当 $V_{\rm OUT} > V_{\rm DDMIN}$ 时,则 $T_{\rm D} < T_{\rm DCLK}$,而调压信号 $D_{\rm SIG}$ 为高电平且负载可以正常工作。

当 $V_{\text{OUT}} < V_{\text{DDMIN}}$ 时,信号 D_{SIG} 保持低电平。 功率开关由 AVS 控制电路产生的 VAPSM 脉冲控制, 其频率和占空比分别为 2 MHz 和 0.3。而当 V_{OUT} > V_{DDMIN} 时,信号 D_{SIG} 将一直保持高电平,同时功率 管被占空比为0的 VAPSM 脉冲关闭。然而当 VOUT 接 近 V_{DDMIN}时,调压信号 D_{SIG}将会在高低电平之间快 速翻转,此时只需微调电压 V_{OUT}。根据 D_{SIG} 快速翻 转的高低电平,控制脉冲 VAPSM 的占空比会在 0 和 0.3 之间自适应地变化。随着 D_{SIG} 的变化, 控制脉 冲 V_{APSM} 以微调的方式对电压 V_{OUT} 进行调节。然而 延迟时间 T_D随着负载工作环境和温度的变化而变 化,此时的电压 Vour 对于负载当前的工作状态有点 太高或太低, APSM 控制器根据 D_{stg} 的变化, 生成 具有自适应占空比的控制脉冲 V_{APSM} 对 V_{OUT}进行调 节。同时,当时钟 DCLK 的频率 f_{DCLK} 发生变化时, AVS 控制电路根据 D_{SIG} 的变化通过脉冲 V_{APSM} 调节 电压 V_{OUT},直到电压 V_{OUT}满足数字负载工作频率 对电压的要求。

2.1 APSM 控制器工作原理

在数字电路各种能量消耗中,由开关电容充放 电引起的动态功耗 *E*_d 是数字电路能量消耗的主要 成分,有

$$E_{\rm d} = \alpha C_{\rm eff} V_{\rm DD}^2 f_{\rm DCLK} \tag{1}$$

其中, V_{DD}, C_{eff} 和 α 分别是供电电压, 平均开关电 容和活跃因子^[19]。但是对于一个给定的任务, 数字 电路完成该任务需要的时钟周期个数 M 是恒定不变

的^[9]。所以,如果数字电路完成该任务的时间 $T_{\text{OP}} = MT_{\text{DCLK}}$ 在式(1)中被考虑,有

 $E_{\rm d} = \alpha C_{\rm eff} V_{\rm DD}^2 f_{\rm DCLK} \cdot M T_{\rm DCLK} = \alpha C_{\rm eff} V_{\rm DD}^2 M$ (2) 其中, $T_{\rm DCLK} = 1/f_{\rm DCLK}$ 。如式(2)所示,当数字电路 的工作电压 $V_{\rm DD}$ 不变而工作频率 $f_{\rm DCLK}$ 发生变化时, 其动态能耗保持不变。这也是在实现低功耗技术中 改变工作电压 $V_{\rm DD}$ 而不是工作频率 $f_{\rm DCLK}$ 的原因。然 而对于一个包含有 N级门电路的延迟链,例如对数 字负载关键路径复制的 CPR 的工作电压为 $V_{\rm DD}$ 时, 时钟 DCLK 穿过 CPR 的延迟时间 $T_{\rm D}$ 为

$$T_{\rm D} = \eta N t_d = \eta N \frac{V_{\rm DD}}{\left(V_{\rm DD} - V_{\rm th}\right)^2} \tag{3}$$

其中, η 是比例因子。此时若 CPR 能正常工作,则 时钟周期 T_{DCLK} 应该大于延迟时间 $T_{\text{D}}^{[20]}$ 。 T_{DCLK} , T_{D} 和 V_{DD} 之间的关系为

$$T_{\rm D} = \eta N \frac{V_{\rm DD}}{\left(V_{\rm DD} - V_{\rm th}\right)^2} \le T_{\rm DCLK} \tag{4}$$

因此,供电电压 V_{DD}有一个最小值 V_{DDMIN} 使式(4) 成立。即当 CPR 的工作频率为 fpcLK 时,使 CPR 能够正常工作的最小电压为 V_{DDMIN}。由于 CPR 是 对数字负载关键路的复制,为了提高 CPR 对关键路 径的复制精度同时减小电压裕度, CPR 由具有"2:2" 双堆叠的 NMOS 和 PMOS 结构组成^[10]。所以, CPR 能够模拟负载在不同工作环境和频率下的实际工作 状态,通过对 CPR 的紧密追踪和跟随可以得到负载 即时的性能指标。同时,根据式(4)时钟频率 foctk 和最小工作电压 V_{DDMIN}之间有一对一的关系,即对 于任意的工作频率 f_{DCLK},都有一个最小工作电压 V_{DDMIN}与之对应。然而,当频率 f_{DCLK}保持不变时, 延迟时间 T_D 会随着负载工作环境和温度的变化而 变化,因此根据式(4)最小工作电压 V_{DDMIN} 也会发生 改变。同样地,当频率 fpclk 因系统或工作任务而改 变时,最小工作电压 V_{DDMIN} 随着延迟时间 T_D的变 化而不同。

当数字负载的工作频率 f_{DCLK} 保持恒定而工作 电压 V_{DD}等于其最小工作电压 V_{DDMIN}时,式(1)中 数字负载的动态功耗 E_d有最小值。但是,即使数字 负载的工作频率 f_{DCLK} 保持不变,由于负载工作环境 和温度的变化使得最小电压 V_{DDMIN} 不同,动态功耗 E_{d} 的最小值随着电压 V_{DDMIN} 的变化而变化。然而, 如何检测延迟时间 T_{D} 和最小电压 V_{DDMIN} 的变化是 一个十分关键的问题,而 APSM 控制器则能有效地 解决该问题, APSM 控制器可以敏感地检测到 V_{DDMIN} 和 T_{D} 的变化,同时输出调压信号 D_{SIG} 。

APSM 控制器电路框图如图 2 所示,主要包括 延迟检测电路, CPR 和自适应占空比电路。其中延 迟检测电路和 CPR 的工作原理如图 3 所示。当数字 负载以某个频率 f_DCLK 工作时,如果其供电电压 V_{DD}(即 DC-DC 变换器的输出电压 V_{OUT})大于最小 电压 V_{DDMIN} ,则延迟时间 T_{D} 小于 DCLK 的时钟周 期 T_{DCLK}。所以 DCLK 的上升沿在一个周期 T_{DCLK} 内可以通过 CPR。正如图 2 和图 3 所示,时钟 DCLK 的上升沿可以用信号 F 的上升沿代替。所以,如果 $V_{\text{OUT}} > V_{\text{DDMIN}}$,在一个周期 T_{DCLK} 内F的上升沿能 够通过 CPR。与非门接收信号 DT 和 F,同时输出 低电平信号 Xor。D 触发器被信号 F n 的上升沿触 发,采样到 Xor 信号的低电平,同时输出高电平调 压信号 D_{SIG}。与此相反,如果 V_{OUT} < V_{DDMIN},在一 个周期 T_{DCLK}内 F 的上升沿将不能通过 CPR。D 触 发器将采样到 Xor 信号的高电平,同时输出的 D_{SIG} 信号为低电平。然而,当输出电压 Vour 保持不变时, 延迟时间 $T_{\rm D}$ 会随着负载工作环境,温度和工作频率 f_{DCLK}的变化而变化。因此 D_{SIG} 可能为高或低,导致 最小工作电压 V_{DDMIN} 发生改变。根据上述延迟检测 电路的工作原理,在不同的工艺角和温度下对延迟 检测电路进行仿真,得到数字负载最小工作电压 V_{DDMIN}和工作频率 f_{DCLK}之间的对应关系。仿真结果 如图 4 所示,在不同的温度和工艺角下,随着 foclk 的降低 V_{DDMIN} 急剧减小。延迟检测电路快速的检测 和精确的展示了电压 V_{DDMIN} 和频率 f_{DCLK} 之间的一 致关系。延迟检测电路将数字负载在不同状态下对 工作电压的实际需求通过调压信号 Dsig 及时显现出 来。

图 2 APSM 控制器的电路结构框图

图4 延迟检测电路频率foctk和电压Vodmn之间关系的仿真

在 APSM 控制器中, 延时检测电路仅仅能够获 得调压信号 D_{sig},但是自适应占空比电路能够根据 $D_{\rm SIG}$ 信号生成具有自适应占空比的控制脉冲 $V_{\rm APSM}$ 。 如图 2 所示, 自适应占空比电路结构非常的简洁和 易于实现,其工作原理如图 5 所示。工作时钟 CLK 的频率和占空比分别为 2 MHz 和 0.3。在时钟 CLK 开关周期的高电平开始时,如果信号 D_{sig} 为高电平, 功率开关将不会开启,输出电压 Vour 因为负载消耗 了滤波电容 C中的电荷而逐渐减小。同时,在该周 期的高电平期间一旦 D_{SIG} 变为低电平(V_{OUT}< V_{DDMIN}),功率开关将立刻被开启并在该周期剩下的 高电平期间维持开启状态。同理,在时钟 CLK 开关 周期的高电平开始时,如果信号 D_{SIG} 为低电平,功 率开关将会被开启,电压 Vour 将逐步上升。在此期 间一旦 D_{SIG} 变为高电平($V_{\text{OUT}} > V_{\text{DDMIN}}$),在该周期 余下的时间内功率开关将保持关闭。如果在时钟 CLK 的高电平期间 Dsuc 保持高电平,则出现脉冲跨 周期现象。因此,脉冲 VAPSM 的占空比 DA 随着电压 $V_{\text{OUT}}(D_{\text{SIG}})$ 的变化在0和 $D_{\text{AMAX}} = 0.3$ 之间自适应的 改变, APSM 控制器产生了具有跨周期和自适应占 空比特性的控制脉冲 V_{APSM}。

2.2 控制逻辑算法

在 APSM 控制器模块中,延迟检测电路可以对 负载的实际工作性能进行检测,结果用 D_{SIG} 信号的 高低电平表示。而自适应占空比电路根据 D_{SIG} 信号 生成的控制脉冲 V_{APSM} 对电压 V_{OUT} 进行调节。然而, 各个模块之间怎样协同高效工作却是一个问题。实 际上,模块之间的相互配合对整个电路保持稳定、 性能优化和效率改善是非常重要的。因此,为达到

图 5 自适应占空比产生电路的工作原理

改善电路性能和实现自适应电压调节的目的,在 DC-DC 变换器中加入了控制逻辑算法。如图 6 给出 了控制逻辑算法的工作原理。当环路开始时,通过 DCO 的控制码设定数字负载的工作频率 focuse。然 后延迟检测电路开始对负载在电压 Vour 下的工作 状态进行检测。如图 3 所示,如果 $V_{\text{OUT}} > V_{\text{DDMIN}}$, 则负载和 CPR 能够正常工作且 D_{SIG} 为高电平; 如 果 $V_{\text{OUT}} < V_{\text{DDMIN}}$,则信号 D_{SIG} 为低电平且负载和 CPR 不能正常工作。因此,当 CPR 能够正常工作 时,即代表此时 $V_{\text{OUT}} > V_{\text{DDMIN}}$,应该减小电压 V_{OUT} 。 在 Vour 减小的过程中, 延迟检测电路依然对负载的 工作状态进行及时的检测,同时能够观察到如图 5 所示 VAPSM 的脉冲跨周期现象。输出电压 VOUT 将会 持续地减小直到检测结果显示 Dsig 在高低电平之间 快速翻转,代表输出电压 Vour 已经满足数字负载对 电压的要求,结束整个环路。

当整个环路开始时,设定好工作频率 f_{DCLK} 的初始值。如果 $V_{\text{OUT}} < V_{\text{DDMIN}}$,则 D_{SIG} 为低电平且 CPR 不能正常工作。此时控制脉冲 V_{APSM} 开启功率开关 提升电压 V_{OUT} 。在 V_{OUT} 上升期间,延迟检测电路 仍对负载的工作状态进行检测。如图 5 所示,此时 V_{APSM} 具有最大占空比 $D_{\text{AMAX}} = 0.3$ 。电压 V_{OUT} 持续 上升直到 D_{SIG} 在高低电平之间快速翻转且负载能够 正常工作,则输出电压 V_{OUT} 保持稳定,结束整个环路。

然而,还有另外一种情况,即一旦频率 f_{DCLK}发 生改变,无论电压 V_{OUT} 正处于上升、下降或是稳定 状态,根据此时 V_{OUT} 值控制逻辑算法将立刻重新开 始。同时,延迟检测电路将对负载在新工作频率 f_{DCLK}下的工作状态进行检测。APSM 模块将根据调 压信号 D_{SIG} 对输出电压 V_{OUT} 进行自适应调节。因 此,控制逻辑算法使得 DC-DC 变换器模块之间的 相互协调变的更加紧密,优化了变换器的性能,改 善了能量转换的效率。

图 6 DC-DC 变换器控制逻辑算的工作原理

3 电压纹波分析

为了对 DC-DC 变换器的输出电压纹波进行分 析和讨论,定义参数 V_e 为电压误差且 $V_e = V_{DDMIN}$ $-V_{OUT}$;参数 D_A (非 0 和 D_{AMAX})为在一个开关周期 内控制脉冲 V_{APSM} 的自适应占空比;参数 R_{Load} 为数 字负载的等效电阻,而 ΔV 定义为 DC-DC 变换器 输出电压 V_{OUT} 的电压纹波。当具有 AVS 功能的 DC-DC 变换器在 DCM 模式下稳定工作时,将详细 分析在一个开关周期内参数 D_A , R_{Load} , ΔV 和 V_e 之 间的密切关系。在一个开关周期内输出电压 V_{OUT} 和电感电流 I_L 的波形如图 7 所示,在开关周期开始 时,假设变换器的输出电压 V_{O1} 小于最小工作电压 V_{DDMIN} ,则在 nT 到($n+D_A$)T 的时间内,有电感电流 I_L :

$$I_{L} = (V_{\rm IN} - V_{\rm OUT})(t - nT) / L$$
 (5)

其中,L, T为滤波电感值和控制脉冲 V_{APSM} 的时钟 周期。在 t_0 时刻,有电感电流 I_L :

$$I_L(t_0) = I_{\text{Load}} = V_{\text{OUT}} / R_{\text{Load}}$$
(6)

从 nT到 t_0 的时间内从滤波电容 C中流出的电荷 Q_1 为

 $Q_1 = (t_0 - nT)I_{\text{Load}} / 2 = C(V_{\text{DDMIN}} - V_{\text{O1}}) = V_{\text{e}}C$ (7) 其中, C是滤波电容值。在 $(n+D_{\text{A}})T$ 时,有电感的 峰值电流 I_{P} :

$$I_{\rm P} = (V_{\rm IN} - V_{\rm OUT})(D_{\rm A}T)/L$$
 (8)

在 t_0 到 $(n+D_A)T$ 的时间内,流入滤波电容C的电荷 Q_2 为

$$Q_{2} = [(n + D_{\rm A})T - t_{0}](I_{\rm P} - I_{\rm Load})/2$$

= $C(V_{\rm DDMIN} - V_{\rm O2}) = \Delta V_{2}C$ (9)

有电压误差 V_e为

$$V_{\rm e} = V_{\rm DDMIN} - V_{\rm O1} = \Delta V_2 - \Delta V_1 = (Q_2 - Q_1) / C$$
 (10)
联立式(5)-式(9)代入式(10),有自适应占空比 $D_{\rm A}$

$$D_{\rm A} = \frac{\sqrt{2CL(V_{\rm IN} - V_{\rm OUT})V_{\rm e} + \left(\frac{L V_{\rm OUT}}{R_{\rm Load}}\right)^2 + \frac{L V_{\rm OUT}}{R_{\rm Load}}}{T(V_{\rm IN} - V_{\rm OUT})} (11)$$

如式(11),当数字负载的等效电阻 R_{Load} 保持不 变时,自适应占空比 D_A 将会随着电压误差 V_e 的增 加而变大,但是 D_A 的最大值被限制为最大占空比 D_{AMAX} 。同样当电压误差 V_e 不变时,占空比 D_A 随 着负载等效电阻 R_{Load} 的逐渐变大而越来越小,且其 最小值为 $D_A=2LV_{\text{OUT}}/[R_{\text{Load}}T \cdot (V_{\text{IN}}-V_{\text{OUT}})]$ 。

在时间 $(n+D_A)$ T到 t_1 之间,有 I_L :

$$I_{L} = I_{\rm P} - [t - (n + D_{\rm A})T]V_{\rm OUT} / L$$
 (12)

在 t_1 时刻,电感电流 I_L 等于负载电流 I_{Load} ,故

$$I_L(t_1) = I_{\text{Load}} = V_{\text{OUT}} / R_{\text{Load}}$$
(13)

$$Q_3 = [t_1 - (n + D_A)T](I_P - I_{Load})/2$$
(14)

有输出电压纹波△V为

$$\Delta V = V_{O3} - V_{O2} = (Q_3 + Q_2) / C \tag{15}$$

联立式(5)~式(9)和式(12)~式(14)代入式(15),有电 压纹波ΔV

$$\Delta V = \frac{1}{2LC} \frac{V_{\rm IN}}{V_{\rm OUT}} \left(D_{\rm A} T \right)^2 \left(V_{\rm IN} - V_{\rm OUT} \right)$$
$$\cdot \left(1 - \frac{LV_{\rm OUT}}{D_{\rm A} T R_{\rm Load} (V_{\rm IN} - V_{\rm OUT})} \right)^2 \tag{16}$$

根据式(16)知,当负载等效电阻 R_{Load}固定时, 电压纹波 ΔV 随着占空比 D_A 的增加而变大。而当 $D_{\rm A}$ 保持不变时,负载越轻则 ΔV 越大。综合式(16) 和式(11),占空比 D_A随着电压误差 V_e的变化而自 适应变化,且正比于 V。的平方根。因此,如果电压 误差 V_e突然变大,即 DC-DC 变换器的输出电压 Vour 突然急剧下降,则占空比 D_A 也会立刻增加, 这提升了变换器的响应速度但也导致电压纹波变 大。因此负载越轻,占空比 D_A 越小,纹波电压 ΔV 越小。所以,当 V_{OUT} > V_{DDMIN},控制脉冲 V_{APSM}的 占空比 D_A 为零。否则 D_A 随着 V_e的变化而自适应地 改变。因此,本文提出的 APSM 技术改善了输出电 压的纹波。DC-DC 变换器在不同负载下的仿真结果 如图 8, 变换器输出电压 Vour 的纹波随着负载的变 轻而减小,同时可以明显看到控制脉冲 V_{APSM} 的跨 周期和自适应占空比现象。

4 测试结果

本文中基于 PSM DC-DC 变换器的 AVS 技术 使用标准 0.13 μ m CMOS 工艺制造,其中芯片版图 面积为 1.2 mm²。图 1 中显示的主要模块都被集成 在芯片上,包括功率 MOS 和驱动电路。片外器件 只有滤波电感 *L* 和滤波电容 *C*,其值分别为 3.3 μ H 和 2.2 μ F。当负载的工作频率在 30~150 MHz 范围 内变换时, DC-DC 变换器自适应的调节其输出电压 V_{OUT}在 0.6~1.5 V 之间变化。根据式(2)对数字电路 能量消耗的定义。图 9 给出了不同的温度和工艺角 下,工作频率不同时数字负载的能量消耗。在使用 本文提出的基于脉冲跨周期 DC-DC 变换器的自适 应电压调节技术,相比于传统固定工作电压的电路 最多能节约 83%的能量。

图 10 给出了当数字负载的工作频率变化时, DC-DC 变换器的输出电压 V_{OUT} 对频率变换的响应 波形。如图 10(a),当数字负载工作频率从 50 MHz 变到 122 MHz 时,电压 V_{OUT} 变化了大约 0.6 V,建 立时间大约为 35 μs。如图 10(b),负载工作频率从 161 MHz 变到 32 MHz 时,电压 V_{OUT} 变化了大约 1.1 V 时建立时间为 65 μs。图 11 则给出了数字负载 工作频率从 50 MHz 变到 152 MHz 或从 152 MHz 变到 50 MHz 时,输出电压 V_{OUT} 大约变化了 0.9 V。

图 12 给出了 DC-DC 变换器稳定工作时,功率 开关的控制脉冲 V_{APSM} 、调压信号 D_{SIG} 和输出电压 V_{OUT} 的测试波形。电压 V_{OUT} 的纹波大约为 50 mV。 同时能很明显的观察到控制脉冲 V_{APSM} 的自适应占 空比及其脉冲跨周期现象。其中,控制脉冲 V_{APSM} 的自适应占空比现象是当输出电压 V_{OUT} 趋于稳定 时,由于 $V_{OUT} < V_{DDMN}$,使 D_{SIG} 为低电平以开启功 率开关提升电压 V_{OUT} ;跨周期现象则是由于在时钟 CLK 的高电平期间输出电压 V_{OUT} 大于最小工作电 压 V_{DDMIN} (D_{SIG} 为高电平)。同时,在表 1 中给出了 对本文与参考文献性能比较的总结。

(a) DC-DC变换器上调压时频率追踪测试波形

(b) DC-DC变换器下调压时频率追踪测试波形

图 10 DC-DC 变换器频率追踪测试波形

图 11 DC-DC 变换器上下调压时 频率追踪测试波形

$V_{\rm OUT}(500~{ m mV/div})$	1 μs I←→I
V _{APSM} (2.0 V/div)	脉冲跨周期
	-mmm
Derc(2.0 V/div)	白汗向上向比
	日趋应百至山

图 12 DC-DC 变换器稳定工作时,信号 V_{OUT}, V_{APSM}和 D_{SIG} 的测试波形

序号	文献[3]	文献[5]	文献[6]	文献[8]	文献[9]	文献[10]	本文
输入电压(V)	/	2.6-3.6	/	/	/	1.1	3.3
输出电压(V)	0.7 - 1.0	1.7 - 1.8	1.0 - 1.2	0.4 - 0.8	0.9-1.8	/	0.6 - 1.5
工艺	90 nm	$0.13~\mu{ m m}$	$65 \ \mathrm{nm}$	22 nm	$0.18~\mu{ m m}$	40 nm	$0.13~\mu{ m m}$
	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS
芯片面积(mm²)	/	5.29	/	4.0×5.8	$0.9{ imes}0.9$	$6.51{ imes}6.5$	1.2
工作频率(MHz)	40 - 145	2	/	800	10-45	533	40 - 145
峰值性能	节约87%	最大效率	节约13.5%	节约14.5%	节约39%	节约27%	节约83%
	能量@0.62 V	95%	能量	能量@0.8 V	能量	能量@1 V	能量

表1 性能比较

5 结论

本文提出了基于脉冲跨周期 DC-DC 变换器的 自适应电压调节技术,通过理论分析和仿真结果验 证了 APSM 技术和自适应电压调压技术的工作原 理。由于 CPR 技术在 AVS 中的使用,减小了数字 电路的工作电压和能量消耗。通过使用 APSM 技术, 控制脉冲的占空比随着变换器输出电压的变化而自 适应地改变,进而改善了输出电压的纹波。仿真和 测试结果显示 DC-DC 变换器根据数字负载工作环 境、温度和频率的变化而自适应地调节输出电压, 其在频率响应阶段能稳定工作,同时证实了关于电 压纹波的理论分析。该电路结构在便携式、可穿戴 电子产品和可植入医疗电子等低压低功耗电子产品 中具有广泛的应用前景。

参考文献

- KONIJNENBURG M, STANZIONE S, YAN L, et al. A battery-powered efficient multi-sensor acquisition system with simultaneous ECG, BIO-Z, GSR, and PPG[C]. IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2016: 480–481.
- [2] DINI Michele, ROMANI Aldo, FILIPPI Mtteo, et al. A nanocurrent power management IC for low-voltage energy harvesting sources[J]. *IEEE Transactions on Power Electronics*, 2016, 31(6): 4292–4304.
- [3] JOSE Luis and NUNEZ Yanez. Adaptive voltage scaling with in-situ detectors in commercial FPGAs[J]. IEEE

Transactions on Computers, 2015, 64(1): 45–53. doi: 10.1109/ TC.2014.2365963.

- [4] DANCY A P, AMIRTHARAJAH R, and CHANDRAKASAN A P. High-efficiency multiple-output DC-DC conversion for low-voltage systems[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2000, 8(3): 252–263. doi: 10.1109/92.845892.
- [5] ZHEN Shaowei, LUO Ping, and ZHANG Bo. Design of highly integrated power management unit with dual DVS-enabled regulators[J]. Analog Integrated Circuits and Signal Processing, 2014, 80: 209–220. doi: 10.1007/s10470-014-0313-1.
- [6] WIRNSHOFER M, HEIβ L, GEORGAKOS G, et al. A variation-aware adaptive voltage scaling technique based on in-siut delay monitoring[C]. IEEE 14th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Cottbus, Germany, 2011: 261–266.
- [7] LUO Ping, FU Songlin, ZHANG Xiang, et al. An adaptive voltage scaling circuits based on dominate pole compensation
 [C]. Processing 11th IEEE International Conference on ASIC, Chengdu, China, 2015: 1–4.
- [8] CHO M, KIM S, TOKUNAGA C, et al. Post-silicon voltage-guard-band reduction in a 22nm graphics execution core using adaptive voltage scaling and dynamic power gating [C]. IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2016: 152–153.
- ELGEBALY M and SACHDEV M. Variation-aware adaptive voltage scaling system[J]. *IEEE Transactions on Very Large*

- [10] IKENAGA Y, NOMURA M, SUENAGA S, et al. A 27% active-power-reduced 40-nm CMOS multimedia SoC with adaptive voltage scaling using distributed universal delay lines[J]. *IEEE Journal of Solid-State Circuits*, 2012, 47(4): 832–840. doi: 10.1109/JSSC.2012.2185340.
- [11] KAPAT S, BANERJEE S, and PATRA A. Discontinuous map analysis of a DC-DC converter governed by pulse skipping modulation[J]. *IEEE Transactions on Circuits and System I*, 2010, 57(7): 1793–1801. doi: 10.1109/TCSI.2009. 2034888.
- [12] LIOU W R, YEH M L, and KUO Y L. A high efficiency Dual-Mode buck converter IC for portable applications[J]. *IEEE Transactions on Power Electronics*, 2008, 23(2): 667–677. doi: 101109/TPEL.2007.915047.
- [13] LUO Ping, LI Zhaoji, and ZHANG Bo. A novel improved PSM model in DCDC converter based on energy balance[C].
 37th IEEE Power Electronics Specialists Conference, Jeju, South Korea, 2006: 1–4.
- [14] KAPAT S, MANDI B C, and PATRA A. Voltage-mode digital pulse skipping control of a DC-DC converter with stable periodic behavior and improved light-load efficiency[J]. *IEEE Transactions on Power Electronics*, 2016, 31(4): 3372–3379. doi: 10.1109/TPEL.2015.2455553.
- [15] 罗萍,李肇基,熊富贵,等.开关变换器的跨周期调制模式[J]. 电子与信息学报,2004,26(6):984-988.
 LUO Ping, LI Zhaoji, XIONG Fugui, et al. Pulse-cycle skip modulation in switching converter[J]. Journal of Electronics & Information Technology, 2004, 26(6): 984-988.
- [16] 牛全民,罗萍,李肇基,等. Boost 变换器跨周期调制(PSM)
 的状态空间平均模型[J]. 电子与信息学报,2006,28(10):
 1955-1958.

NIU Quanmin, LUO Ping, LI Zhaoji, *et al.* Space state average model of PSM in boost converter[J]. *Journal of* Electronics & Information Technology, 2006, 28(10): 1955–1958.

- [17] 李航标,张波,罗萍,等.开关 DC-DC 变换器的自适应占空 比跨周期控制方法[J].电子与信息学报,2014,36(9): 2265-2271. doi: 10.3724/SP.J.1146.2013.01693.
 LI Hangbiao, ZHANG Bo, LUO Ping, *et al.* Pulse skip with adaptive duty ratio control technique for switching DC-DC converter[J]. *Journal of Electronics & Information Technology*, 2014, 36(9): 2265-2271. doi: 10.3724/SP.J.1146. 2013.01693.
- [18] LI Hangbiao, ZHANG Bo, LUO Ping, et al. Adaptive duty ratio modulation technique in switching DC-DC converter operating in discontinuous conduction mode[J]. Analog Integrated Circuits and Signal Processing, 2014, 78(2): 361-371. doi: 10.1007/s10470-015-0603-2.
- [19] WEI G Y and HOROWITZ M. A fully digital energy-efficient adaptive power supply regulator[J]. *IEEE Journal of Solid-State Circuits*, 1999, 34(4): 520–528. doi: 10.1109/ 4.753685.
- [20] CALHOUN B H, WANG A, and CHANDRAKASAN A. Model and sizing for minimum energy operation in subthreshold circuits[J]. *IEEE Journal of Solid-State Circuits*, 2005, 40(9): 1778–1786. doi: 10.1109/JSSC.2005.852162.
- 王东俊: 男,1988年生,博士,研究方向为电源管理技术与功率 集成电路.
- 罗 萍: 女,1968年生,教授,研究方向为电源管理技术与功率 集成电路.
- 彭宣霖: 男,1989年生,硕士,研究方向为电源管理技术与功率 集成电路.
- 甄少伟: 男,1982年生,副教授,研究方向为电源管理、传感器 读出等模拟、混合信号集成电路设计.
- 贺雅娟: 女,1978年生,副教授,研究方向为低压低功耗数字电路设计.