基于参数化时频分析的进动锥裙目标瞬时微多普勒频率提取方法

肖金国 杜 兰* 韩 勋 曹文杰 刘宏伟 (西安电子科技大学雷达信号处理国家重点实验室 西安 710071)

摘 要: 微动目标散射点的微多普勒对目标运动、结构参数的估计具有重要意义。该文针对表面光滑的锥裙目标, 首先依据进动锥裙目标的等效散射点模型,推导出散射点的理论微多普勒曲线表达式。结合进动调制的锥裙目标微 多普勒曲线为多阶正弦级数叠加的先验信息,提出一种基于参数化时频分析的进动锥裙目标微多普勒曲线提取方 法。针对多分量信号组成的锥裙目标回波,该方法利用相干信号单距离多普勒干涉(CSRDI)方法估计锥旋频率,进 而利用参数化时频分析估计散射点的微多普勒曲线,之后利用带阻滤波器分离估计得到的散射点回波信号。基于电 磁仿真数据验证了所提方法的有效性。

关键词: 锥裙目标; 进动; 微多普勒; 参数化时频分析; 相干信号单距离多普勒干涉方法
 中图分类号: TN957.51
 文献标识码: A
 文章编号: 1009-5896(2016)01-0090-07
 DOI: 10.11999/JEIT150505

Micro-Doppler Frequency Extraction for Cone-skirt Shaped Target with Precession Based on Parameterized Time-frequency Analysis

XIAO Jinguo DU Lan HAN Xun CAO Wenjie LIU Hongwei (National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China)

Abstract: The micro-Doppler signatures can be utilized to the estimation of the motion and structure parameters of the targets. In this paper, based on the effective point scatterer model of the cone-skirt shaped target, the formulas of micro-Doppler induced by the precession are derived. Since the micro-Doppler curves induced by the precession are in the forms of the multi-stage superimposed sine series for the cone-skirt shaped target, an approach to extract the micro-Doppler frequency based on the parameterized time-frequency analysis is proposed. In this method, the precession frequency is first estimated via the Coherent Single Range Doppler Interferometry (CSRDI) algorithm, then the micro-Doppler curve of each scatterer is estimated based on the parameterized time-frequency analysis, and finally the scatterers' echoes can be separated with the band-stop filter. In the simulation experiments, the proposed method is evaluated based on the electromagnetic computation data.

Key words: Cone-skirt shaped target; Precession; Micro-Doppler; Parameterized time-frequency analysis; Coherent Single Range Doppler Interferometry (CSRDI) algorithm

1 引言

带有尾裙的弹头等锥裙目标在大气层外飞行时,由于目标不受外力,目标会做绕自身对称轴自旋的同时绕某一空间定向轴锥旋的运动,这种运动被称为进动^[1]。美国海军研究实验室的 CHEN 等人^[2]最早将进动定义为微动的一种,并且在此基础上做了很多有意义的工作。由于微多普勒特性可以反

映目标的电磁散射特性、几何结构特征和运动特性³, 微多普勒已经成为弹道导弹目标分类识别的重要研究方向。从雷达回波中准确提取微多普勒频率 是微动特征提取和参数估计的关键^[4,5]。

已有文献对等效散射点模型的光滑锥体目标的 微多普勒曲线提取进行了研究。文献[6]提出一种在 时频分布(TFD)的基础上,利用多目标跟踪(MTT) 技术分离空间锥体目标各等效散射点微多普勒曲线 的方法。此方法受限于时频图的分辨率,时频图质 量差时易于导致误跟踪。文献[7]针对微多普勒曲线 为正弦曲线的情况,提出了一种基于曲线跟踪的瞬 时频率估计算法。由于此算法中引入信号正弦模型, 对误跟踪情况有一定改善,但仅适用于正弦模型。 文献[8]利用时变自回归模型估计非平稳信号的瞬时 多普勒频率,该方法首先利用回波数据拟合 p 阶信

收稿日期: 2015-04-30; 改回日期: 2015-09-06; 网络出版: 2015-11-18 *通信作者: 杜兰 dulan@mail.xidian.edu.cn

基金项目:国家自然科学基金(61271024, 61201292, 61322103),高 等学校博士学科点专项科研基金博导类基金(20130203110013),陕 西省自然科学基础研究计划(2015JZ016)

Foundation Items: The National Natural Science Foundation of China (61271024, 61201292, 61322103), The Foundation for Doctoral Supervisor of China (20130203110013), The Science Foundation of Shaanxi Province (2015JZ016)

号时变自回归模型¹⁹,获得模型时变参数,然后根据 信号功率谱密度极点位置实现对多分量信号的瞬时 多普勒频率估计。此方法在低信噪比情况下效果不 佳。文献[10]提出了一种基于瞬时频率估计和随机抽 样一致性的进动目标瞬时微多普勒频率提取方法, 该方法将回波信号分为若干段,每一段的回波信号 近似为若干线性调频信号分量之和,通过调频 Relax 算法[11]估计各信号分量的瞬时频率,并通过随机抽 样一致性算法估计散射点的微多普勒曲线。上述文 献研究对象为光滑锥体目标,对于带有尾裙的光滑 锥裙目标,少有文献研究。本文针对锥裙目标,提 出了一种提取锥裙目标等效散射点瞬时微多普勒曲 线的方法,该方法首先利用参数化时频分析估计散 射点瞬时微多普勒曲线,之后利用带阻滤波器分离 已估计得到的散射点回波。为了提高对噪声的稳健 性,本文方法使用对噪声稳健的相干信号单距离多 普勒干涉(CSRDI)方法估计锥旋频率。

本文的结构如下:第2节建立了锥裙目标的等效散射点模型,在此基础上对目标进动时各散射点 瞬时微多普勒频率的变化情况进行了推导;第3节 对参数化时频分析方法进行了介绍;第4节对瞬时 微多普勒曲线提取的方法流程进行了介绍;第5节 基于电磁仿真数据验证了算法的有效性,并与文献 [7]中的方法做了对比;第6节总结了全文。

2 锥裙目标微多普勒分析

2.1 锥裙目标等效散射点模型

文献[12]中对进动锥体目标等效散射点模型^[13] 进行了推导。由于遮挡效应,锥体目标有两个等效 散射点可见。本文在锥体目标等效散射点模型的基 础上,对锥裙目标进动公式进行了推导。本文研究 的锥裙目标模型如图1所示。

图 1 中,上半部分锥体高度为 h_1 ,锥体底面半 径为 r_1 ,尾裙高度为 h_2 ,尾裙底面半径为 r_2 ,O为质 心, θ_1 , θ_2 和 θ_3 分别是 FB,FE,BC 与对称轴的夹 角。 β 为姿态角,即雷达视线与对称轴的夹角。根 据等效散射点理论文献[12],对于表面光滑的锥裙目

图1 锥裙目标模型

标,一般认为有 5 个散射点在起作用,分别是锥顶 A,锥底边缘上的两点 B,D 和裙底边缘上的两点 C,E。其中 B,D,C,E为雷达视线与目标对称轴所 确定的平面与锥底、裙底边缘的交点。为区别一般 散射点概念,称 B,D,C,E为等效散射点。

在锥裙目标飞行过程中,由于存在遮挡效应, 使得一些散射点无法被雷达波照射到,散射点的遮 挡效应由姿态角 $\beta 与 \theta_1, \theta_2, \theta_3$ 共同决定。当 $\beta 从 0$ 到 $\pi 变化时, A, B, C, D, E$ 的遮挡情况如表 1 所示。

表1中Y表示遮挡,N表示不遮挡。从表1中 可以看出,不同姿态角下散射点的遮挡情况是不一 样的。对于迎头飞行的目标来说,一般认为散射点 D, E被遮挡,即认为 $\theta_2 < \beta \le \pi/2$,所以本文运 动模型的分析只考虑了A,B,C 3个散射点。

2.2 进动锥裙目标微多普勒频率分析

目标在自旋的同时,其对称轴绕着某一固定轴 做锥旋,这一运动被称为进动。锥裙目标进动模型 如图 2, *OH* 为进动轴,θ为进动角,即对称轴与进 动轴的夹角,γ为平均视线角,即雷达视线与进动 轴的夹角。当目标做进动时,姿态角的变化为

$$\beta(t) = \alpha \cos\left(a - b\cos\left(2\pi f_c t\right)\right) \tag{1}$$

其中 $a = \cos\theta \cos\gamma$, $b = \sin\theta \sin\gamma$, f_e 为进动频率。雷达视线 rLOS 与目标对称轴所确定的平面与目标表面相交 5 个等效散射点A,B,C,D,E。建立如图 2

β	$0\leq\beta\leq\theta_1$	$\theta_1 < \beta \leq \theta_2$	$\theta_2 < \beta \leq \pi/2$	$\pi/2 < \beta \leq \theta_3$	$\theta_3 < \beta \leq \pi$
A	Ν	Ν	Ν	Ν	Y
В	Ν	Ν	Ν	Ν	Y
C	Ν	Ν	Ν	Ν	Ν
D	Ν	Y	Y	Υ	Υ
E	Ν	Ν	Y	Ν	Ν

表1 不同姿态角下各散射点遮挡情况

图 2 进动模型

所示的等效坐标系 OXYZ,其中 Z 轴为目标对称轴, X 轴垂直于雷达视线与对称轴所确定的平面。在此 坐标系中, 雷达视线 rLOS 矢量可以表示为 $[0 \sin\beta(t) - \cos\beta(t)]^{T}$ 。坐标系 OXYZ中,设定散 射点坐标为: $A(0 0 z_A), B(0 y_B z_B), C(0 y_C z_C)$,假 设目标平动已经补偿,进动引发的散射点相对距离 变化 $r_A(t), r_B(t), r_C(t)$ 分别为

$$r_A(t) = R_0 - z_A \cdot \cos\beta(t) \tag{2}$$

$$r_B(t) = R_0 + y_B \cdot \sin\beta(t) - z_B \cdot \cos\beta(t) \qquad (3)$$

$$r_{C}(t) = R_{0} + y_{C} \cdot \sin \beta(t) - z_{C} \cdot \cos \beta(t)$$
(4)

其中 R₀ 表示目标质心 O 与雷达之间的距离。对式 (2),式(3),式(4)求导可以得到散射点的理论微多 普勒曲线为

$$f_{mA}(t) = 2 \cdot 2\pi f_c z_A b \sin(2\pi f_c t) / \lambda = b_A \sin(2\pi f_c t) \quad (5)$$

$$f_{mB}(t) = -\frac{2}{\lambda} y_B \left(a - b \cos(2\pi f_c t) \right)$$

$$\times \frac{2\pi f_c \sin(2\pi f_c t) b}{\sqrt{1 - (a - b \cos(2\pi f_c t))^2}}$$

$$+ \frac{2}{\lambda} 2\pi f_c z_B \sin(2\pi f_c t)$$

$$= \sum_{k=1}^{\infty} b_{Bk} \sin(k 2\pi f_c t) \quad (6)$$

$$f_{mC}(t) = -\frac{2}{\lambda} y_C \left(a - b \cos(2\pi f_c t) \right)$$

$$\times \frac{2\pi f_c \sin(2\pi f_c t) b}{\sqrt{1 - (a - b \cos(2\pi f_c t))^2}}$$

$$+ \frac{2}{\lambda} 2\pi f_c z_C \sin(2\pi f_c t)$$

$$= \sum_{k=1}^{\infty} b_{Ck} \sin(k 2\pi f_c t) \quad (7)$$

可以看出,锥顶散射点A的微多普勒曲线为标 准的正弦曲线,锥底散射点B与裙底散射点C微多 普勒曲线可以分解为无穷阶正弦级数,其中 b_{Bk}, b_{Ck} 分别为 k 阶正弦级数的系数。

3 参数化时频分析

根据是否预先假定信号模型,将时频分析方法 分为非参数化时频分析方法和参数化时频分析方 法。其中,非参数时频分析方法没有假定信号模型, 它对非平稳信号的时频表示往往存在集中度不高或 交叉项干扰问题。与非参数化时频方法相比,参数 化时频方法的优点在于:它针对信号模型构造匹配 的变换核,通过选择恰当的参数,从而可得到具有 较高集中度且没有交叉项干扰的时频表示^[4]。进动 锥裙目标回波信号为典型的强时变非平稳信号,参 数化时频分析能有效分析这类信号并提取有用信 息。

参数化时频分析方法是利用信号模型先验来提 高时频分辨力。2.2 节已经推导出进动锥裙目标瞬时 微多普勒表达式,因此可以利用参数化时频分析方 法精确提取微多普勒曲线。锥裙目标的窄带雷达回 波经过匹配滤波后,回波信号可以表示为

$$S_{r}(t_{m}) = \sum_{i=1}^{3} a_{i} \mathrm{e}^{-\mathrm{j}\frac{4\pi}{\lambda}R_{0}} \cdot \mathrm{e}^{\mathrm{j}2\pi \int f_{mi}(t_{m})\mathrm{d}t_{m}}$$
(8)

 a_i 表示第i个散射点后向散射系数, t_m 表示慢时间, λ 表示波长, $f_{mi}(t_m)$ 表示第i个散射点的微多普勒频 率。对信号做参数化时频分析变换^[4]得

$$TF(t_{0}, f; P) = \int_{-\infty}^{\infty} \bar{s}(\tau) g_{\sigma}^{*}(\tau - t_{0}) e^{-j2\pi f\tau} d\tau$$

$$\bar{s}(\tau) = s_{r}(\tau) \cdot \Phi_{P}^{R}(\tau) \cdot \Phi_{t_{0}, P}^{S}(\tau)$$

$$\Phi_{P}^{R}(\tau) = e^{-j2\pi \int \kappa_{P}(\tau) d\tau}$$

$$\Phi_{t_{0}, P}^{S}(\tau) = e^{j2\pi \cdot \tau \cdot \kappa_{P}(t_{0})}$$
(9)

$$\begin{split} \kappa_{P}(\tau) 表示参数化时频分析的变换核, P 表示变换核$$
 $参数, \Phi_{P}^{R}(\tau) 表示频率旋转算子, \Phi_{t_{0},P}^{S}(\tau) 表示频率$ $平移算子, g_{\sigma}(\tau) 表示时频变换的窗函数。对于单个$ $散射点回波信号 s(t) = a · e^{-j\frac{4\pi}{\lambda}R_{0}} · e^{j2\pi\int f_{m}(t)dt}, 当$ $\kappa_{P}(\tau) = f_{m}(\tau) 时,$ $\overline{s}(\tau) = s(\tau) · \Phi_{P}^{R}(\tau) · \Phi_{t_{0},P}^{S}(\tau) \\ &= a \cdot e^{-j\frac{4\pi}{\lambda}R_{0}} \cdot e^{j2\pi\int \kappa_{P}(\tau)d\tau} \cdot e^{-j2\pi\int \kappa_{P}(\tau)d\tau} \\ &\cdot e^{j2\pi\tau \cdot \kappa_{P}(t_{0})} = a \cdot e^{-j\frac{4\pi}{\lambda}R_{0}} \cdot e^{j2\pi\tau \cdot \kappa_{P}(t_{0})} \quad (10) \end{split}$

此时信号 *s*(*τ*) 是平稳信号,对其做短时傅里叶变换, 时频聚集性提高。变换核 *κ*_{*p*}(*τ*) 即散射点的微多普勒 曲线。参数化时频方法是分析单分量信号的有力工 具。但它采用单值的变换核不能同时刻画不同分量 的时频特征,故不适合用来分析多分量信号。针对 式(8)的多分量信号回波,需要将多分量信号分解为 多个单分量信号。

4 微多普勒曲线提取

2.2 节推导出锥裙模型进动时散射点的瞬时微 多普勒曲线为无穷阶正弦级数叠加,针对此模型先 验,本文提出利用参数化时频分析方法精确提取瞬 时微多普勒曲线。为了提高方法的抗噪性,本文方 法中使用对噪声稳健的 CSRDI 估计锥旋频率。

4.1 CSRDI 方法估计锥旋频率

相干信号单距离多普勒干涉(CSRDI)的成像方 法通过对回波进行时频分析,利用时频谱的相位信 息,在时频域实现对目标回波的相干积累。该方法 在低信噪比下表现良好。文献[15]中使用这种方法实 现了对频率的精确估计。本文中采用此方法估计锥 旋频率。

CSRDI 估计参数可以表示为 $I(b', f_c^{'})$

$$= \left| \int S\left(t_m, f_d(b', f_c', t_m)\right) \cdot e^{j\vartheta(b', f_c', t_m)} \cdot e^{j2\pi f_d(b', f_c', t_m)t_m} \left. \mathrm{d}t_m \right|^2$$
(11)

其中 b', f'_c 表示要搜索的参数, $S(t_m, f_d(b', f'_c t_m))$ 表示 回波信号 $S_r(t_m)$ 做短时傅里叶变换后的时频表示 $S(t_m, f)$ 在 $f = f_d(b', f'_c, t_m)$ 的值。2.2 节指出锥底与裙 底散射点进动微多普勒曲线为无穷阶正弦级数叠 加。文献[10]指出,锥底与裙底散射点进动微多普勒 曲线近似为正弦曲线, 在此设定 $f_d(b', f'_c, t_m) = b'$ ·sin($2\pi f'_c t_m$), $e^{i\vartheta(b', f'_c, t_m)} = e^{i2\pi f_d(b', f'_c, t_m) t_m}$,即假定提取 的曲线为正弦曲线。 $I(b', f'_c)$ 峰值点对应的 b', f'_c 即为 所搜索曲线的一阶正弦级数系数与锥旋频率。

4.2 基于参数化时频分析的瞬时微多普勒频率估计 方法

参数化时频分析的关键在于变换核参数的估计,针对锥裙目标散射点瞬时微多普勒曲线为多阶 正弦级数叠加的特点,设计变换核参数估计的流程 如图 3 所示。

正弦级数系数与傅里叶变换系数之间有如下关系: $b_i = -(2/N)\tilde{F}(i)$,其中, $\tilde{F}(i) = \text{FFT}(\tilde{f}_m(t))$ 。 流程图中的终止条件设置为: $\Lambda = \frac{\int \left| f_m^j(t) - f_m^{j-1}(t) \right| dt}{\int \left| f_m^j(t) \right| dt} < \zeta$ 或者 $j \le 10$,其中 ζ 为一极

小常数。

4.3 多分量信号分解方法

锥裙目标回波信号为多分量信号,第3节指出, 参数化时频分析不适用于多分量信号,需要将多分

图 3 基于参数化时频分析的瞬时微多普勒频率估计流程图

量信号分解成多个单分量信号。

假设已得到其中一个散射点的微多普勒曲线, 不失一般性,设为 $f_{m1}(t_m)$ 。由此确定的频率旋转算 子为 $\Phi^R(t_m) = e^{-i2\pi \int f_{m1}(t_m) it_m}$,对式(8)乘以 $\Phi^R(t_m)$, 得到旋转后的信号为

$$S_r^R(t_m) = S_r(t_m) \cdot \varPhi^R(t_m)$$

= $e^{-j\frac{4\pi}{\lambda}R_0} \cdot \left[a_1 + a_2 e^{j2\pi\int\Delta f_{m2}(t_m)dt_m} + a_3 e^{j2\pi\int\Delta f_{m3}(t_m)dt_m}\right]$ (12)

其中 $\Delta f_{m2}(t_m) = f_{m2}(t_m) - f_{m1}(t_m)$, $\Delta f_{m3}(t_m) = f_{m3}(t_m) - f_{m1}(t_m)$ 。从式(12)可以看出,分量1信号回波旋转到了零频附近,将旋转后的信号通过一个零频附近的带阻滤波器,滤除分量1信号回波,再对信号进行反旋转得

$$S_{r}^{CR}(t_{m}) = S_{r}^{R}(t_{m}) \cdot \operatorname{\mathbf{conj}}\left(\Phi^{R}\left(t_{m}\right)\right)$$
$$= e^{-j\frac{4\pi}{\lambda}R_{0}} \cdot \left[a_{2}e^{j2\pi\int f_{m2}(t_{m})dt_{m}} + a_{3}e^{j2\pi\int f_{m3}(t_{m})dt_{m}}\right]$$
(13)

式(13)中的信号只有分量 2 与分量 3 的回波,至此 实现了多分量信号的分解。

5 仿真实验

5.1 仿真参数设置

运动参数设置:进动角 $\theta = 10^{\circ}$,平均视线角 $\gamma = 45^{\circ}$,锥旋频率 $f_r = 2$ Hz。

雷达参数设置:脉冲重复频率 PRF = 500 Hz, 观测时间 TT = 0.5 s,载频 $f_0 = 10$ GHz,带宽 B = 5 MHz,脉冲宽度 $t_p = 10$ μs。

锥裙弹头参数设置:如图 1 中, $h_1 = 0.96$ m, $h_2 = 0.5$ m, $r_1 = 0.25$ m, $r_2 = 0.5$ m, 质心O 距离 裙底底面的距离为 0.38 m。

电磁仿真采用水平极化入射方式和水平极化接

收方式。电磁计算方法采用的是物理光学(PO)法。 电磁仿真数据时频图与理论微多普勒曲线如图 4 所 示,其中横坐标中的 *t* 为慢时间。

图 4(b)中实线、点虚线、虚线分别表示锥顶散 射点 A、锥底散射点 B、裙底散射点 C 的理论微多 普勒曲线。从图 4(a), 4(b)比较可以看出,理论微多 普勒曲线与电磁仿真数据时频图吻合,也说明了第 2 节分析的正确性。

5.2 锥裙微多普勒曲线提取流程与实验结果

从图 4 可以看出,散射点 C 的回波强度最强, B 次之, A 最弱。根据此特点,设计图 5 所示的流程

图 4 进动锥裙目标时频图与理论微多普勒曲线

图 5 锥裙目标微多普勒曲线提取流程

来提取微多普勒曲线。

为了定量分析提取的曲线与理论曲线的吻合程度,现引入式(14)所示的计算曲线正确率:

$$E_{r} = \left(1 - \frac{\sum_{k} |IF_{r}(k) - IF_{e}(k)|}{\sum_{k} |IF_{r}(k)|}\right) \times 100\%$$
(14)

其中 $IF_r(k)$ 为理论微多普勒曲线, $IF_e(k)$ 为提取的微 多普勒曲线, k 表示离散化的慢时间。

表 2 为信噪比 15~30 dB 以及无噪声情况下提 取的微多普勒曲线正确率结果(10 次实验取平均 值):

表2 不同信噪比下正确率统计(%)

15	20	25	30	无噪声
99.37	99.46	99.46	99.46	99.46
95.65	97.67	97.31	96.96	97.93
99.76	99.77	99.78	99.78	99.80
	15 99.37 95.65 99.76	15 20 99.37 99.46 95.65 97.67 99.76 99.77	15 20 25 99.37 99.46 99.46 95.65 97.67 97.31 99.76 99.77 99.78	15 20 25 30 99.37 99.46 99.46 99.46 95.65 97.67 97.31 96.96 99.76 99.77 99.78 99.78

从表 2 中可以看出, 散射点A, C 的微多普勒 曲线正确率都在 99%以上。散射点B的正确率在 95%以上。

图 6 为不同信噪比下文献[10]中调频 Relax 方法 与本文方法在提取曲线正确率上的比较。图中虚线 表示本文算法在不同信噪比下提取的散射点瞬时微 多普勒曲线的正确率,图中实线表示调频 Relax 算 法在不同信噪比下提取的散射点瞬时微多普勒曲线 的正确率。从图中可以看出,本文所提算法明显优 于调频 Relax 算法,且在信噪比低于 25 dB 的情况 下,调频 Relax 算法不再适用,但本文所提算法正 确率依然能够维持在94%以上。

为了更直观地表示理论曲线与提取的曲线的吻 合程度,对本文方法与调频 Relax 方法在 25 dB 下 所提取的曲线与理论曲线比较如图 7 所示。3 条曲 线所代表的散射点微多普勒曲线与图 4 相同。

图 7(a),7(b)中实线表示理论曲线,虚线表示 提取的曲线,可以看出,本文所提方法提取的曲线 与理论曲线吻合度较高,调频 Relax 方法提取曲线 与理论曲线吻合度较差。如图 6 所示,当信噪比低 于 25 dB 时,调频 Relax 方法已不能正确提取瞬时 微多普勒曲线,而本文所提方法在 15 dB 信噪比时 仍有较好结果。

本文中参数化时频分析方法采用快速傅里叶变 换估计参数,此步骤实时实现性较高,所提方法的 运算量主要集中在CSRDI方法中。本文方法中 CSRDI搜索参数包括曲线一阶正弦级数系数与锥旋 频率,运算复杂度为 $O(M \times N)$,其中M,N分别 为一阶正弦级数系数与锥旋频率的搜索量。在不存 在多普勒模糊的前提下,一阶正弦级数系数最大搜 索范围为 $\left[-\frac{\text{PRF}}{2} \quad \frac{\text{PRF}}{2}\right]$ 。空间进动目标锥旋频率 一般不会太大,范围一般在0~3 Hz之间。 文中设置裙底散射点曲线一阶正弦级数系数搜 素范围为-200:1:200,锥底散射点曲线一阶正弦级数 系数搜素范围为-200:1:0,锥顶散射点曲线一阶正弦 级数系数搜素范围为-200:0.5:200,锥旋频率范围为 0:0.1:3,运行平台CPU为Intel Core E7200,主频2.53 GHz,内存2G,使用未优化的Matlab程序,算法全 部的运算时间为11.4 s。相同运行平台下,调频Relax 方法^[10]所用时间为184.4 s。相对于调频Relax方法, 本文方法实时实现性较高。

6 结束语

本文针对锥裙目标模型,分析了目标在进动时 的等效散射点瞬时微多普勒曲线形式。针对微多普 勒曲线特点,本文提出了一种基于参数化时频分析 的微多普勒曲线提取方法。该方法首先利用CSRDI 方法估计锥旋频率,之后通过参数化时频分析方法 与信号分离方法实现了精确提取微多普勒曲线的目 的。该方法提取的曲线不再局限于正弦曲线,且通 过信号分离方法避免了误跟踪情况。实际应用中还 需要考虑平动补偿余项与多普勒模糊问题的影响, 针对存在平动与多普勒模糊问题的多普勒曲线提取 也是我们后续研究的重点。

图 6 本文算法与调频 Relax 算法对比

参 考 文 献

- LEI Peng, SUN Jinping, WANG Jun, et al. Analysis of radar micro-Doppler signatures from rigid targets in space based on inertial parameters[J]. IET Radar Sonar, & Navigation, 2011, 5(2): 93–102.
- [2] CHEN V C, LI F, and WECHSLER H. Micro-Doppler effect in radar phenomenon, model and simulation study[J]. *IEEE Transactions on Aerospace and Electronic Systems*, 2006, 42(1): 2–21.
- [3] 王兆云,张兴敢,柏业超.基于微多普勒的锥体目标进动和结构参数估计[J].南京大学学报(自然科学),2014,50(2): 148-153.
 WANG Zhaoyun, ZHANG Xinggan, and BAI Yechao.

图 7 理论曲线与提取的曲线比较

Precession and structural parameter estimation of coneshaped target based on the micro-Doppler[J]. Journal of Nanjing University (Natural Sciences), 2014, 50(2): 148-153. 韩勋,杜兰,刘宏伟,等. 基于时频分布的空间锥体目标微动

[4] 韩勋,杜兰,刘宏伟,等.基于时频分布的空间锥体目标微动 形式分类[J].系统工程与电子技术,2013,35(4):684-691.
HAN Xun, DU Lan, LIU Hongwei, et al. Classification of micro-motion form of space cone-shaped objects based on time-frequency distribution[J]. Systems Engineering and Electronics, 2013, 35(4): 684-691.

[5] 胡晓伟, 童宁宁, 董会旭, 等. 弹道中段群目标平动补偿与分离方法[J]. 电子与信息学报, 2015, 37(2): 291-296. doi: 10.11999/JEIT140494.

HU Xiaowei, TONG Ningning, DONG Huixu, *et al.* Translation compensation and resolution of multi-ballistic targets in midcourse[J]. Journal of Electronics & Information Technology, 2015, 37(2): 291–296. doi: 10.11999/JEIT140494.

- [6] 邵长宇, 杜兰, 李飞, 等. 基于多目标跟踪的空间锥体目标微 多普勒频率提取方法[J]. 电子与信息学报, 2012, 34(12):
 2972-2977. doi: 10.3724/SP.J.1146.2012.00656.
 SHAO Changyu, DU Lan, LI Fei, *et al.* Micro-Doppler extraction from space cone target based on multiple target tracking[J]. *Journal of Electronics & Information Technology*, 2012, 34(12): 2972-2977. doi: 10.3724/SP.J.1146.2012.00656.
- [7] 李飞, 纠博, 邵长宇, 等. 目标微动参数估计的曲线跟踪算法
 [J]. 电波科学学报, 2013, 28(2): 278-284.
 LI Fei, JIU Bo, SHAO Changyu, *et al.* Curve tracking based parameter estimation of micro-motion[J]. *Chinese Journal of Radio Science*, 2013, 28(2): 278-284.
- [8] 韩勋, 杜兰, 刘宏伟. 空间锥体目标的平动补偿与微动特征提 取方法[J]. 电波科学学报, 2014, 29(5): 815-821.
 HAN Xun, DU Lan, and LIU Hongwei. Translation compensation and micro-motion feature extraction of space cone-shaped target[J]. *Chinese Journal of Radio Science*, 2014, 29(5): 815-821.
- [9] SHARMAN K C and FRIEDLANDER B. Time-varying autoregressive modeling of a class of non-stationary signals[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Glasgow, Scotland, 1984: 227–230.
- [10] 曹文杰,张磊,杜兰,等.基于瞬时频率估计的进动锥体目标 微多普勒提取方法[J].电子与信息学报,2015,37(5): 1091-1096. doi:10.11999/JEIT140985.
 CAO Wenjie, ZHANG Lei, DU Lan, et al. Micro-Doppler extraction for cone-shaped target with precession based on instantaneous frequency estimation[J]. Journal of Electronics & Information Technology, 2015, 37(5): 1091-1096. doi: 10. 11999/JEIT140985.
- [11] LI Changzhi, LING Jun, LI Jian, et al. Accurate doppler

radar noncontact vital sign detection using the RELAX algorithm[J]. *IEEE Transactions on Instrumentation and Measurement*, 2010, 59(3): 687–695.

- [12] GAO Hongwei, XIE Lianggui, WEN Shuliang, et al. Micro-Doppler signature extraction from ballistic target with micro-motions[J]. *IEEE Transactions on Aerospace and Electronic Systems*, 2010, 46(4): 1969–1982.
- [13] 喻荣梅,张仕元,肖健华. 弹道目标移动散射点模型的微多普 勒特征研究[J]. 测控技术, 2014, 33(3): 154-156.
 YU Rongmei, ZHANG Shiyuan, and XIAO Jianhua.
 Research on micro-Doppler signature of ballistic target based on moving scattering center model[J]. *Measurement & Control Technology*, 2014, 33(3): 154-156.
- [14] 杨扬.参数化时频分析理论、方法及其在工程信号分析中的应用[D].[博士论文],上海交通大学,2013.
- [15] 关永胜, 左群声, 刘宏伟, 等. 空间进动目标微动参数估计方法 [J]. 电子 与信息学报, 2011, 33(10): 2427-2432. doi: 10.3724/SP.J.1146.2011.00117.
 GUAN Yongsheng, ZUO Qunsheng, LIU Hongwei, et al. Micro-motion parameters estimation of space precession targets[J]. Journal of Electronics & Information Technology, 2011, 33(10): 2427-2432. doi: 10.3724/SP.J.1146.2011.00117.
- 肖金国: 男, 1987年生, 博士生, 研究方向为雷达空间目标识别.
- 杜 兰: 女,1980年生,教授,博士生导师,主要研究方向为统 计信号处理、雷达信号处理、机器学习及其在雷达目标 检测与识别方面的应用.
- 韩 勋: 男,1990年生,博士生,研究方向为雷达目标识别、空 间目标参数估计.
- 曹文杰: 男,1987年生,博士生,研究方向为雷达空间目标识别.
- 刘宏伟: 男,1973年生,教授,博士生导师,雷达信号处理国家 重点实验室主任、主要研究方向为雷达信号处理、MIMO 雷达、雷达目标识别、自适应信号处理、认知雷达等.