# 自适应阵列中多级维纳滤波器的有效实现算法

丁前军<sup>12</sup> 王永良<sup>2</sup> 张永顺<sup>1</sup> <sup>1</sup>(空军工程大学导弹学院 三原 713800) <sup>2</sup>(空军雷达学院雷达兵器运用工程全军重点实验室 武汉 430010)

**摘 要** 在分析多级维纳滤波器实现算法的基础上,证明了由相关相减算法实现的多级维纳滤波器是一种酉多级 维纳滤波器,与 Goldstein、Reed 和 Scharf 提出的原始实现算法相比,酉多级维纳滤波器具有更好的降秩性能。该 文对相关相减算法中的阻塞矩阵进行改进,使多级维纳滤波器前向递推中观测数据向量的维数逐步降低,且同样 能应用于相关相减算法结构。新的实现算法在进一步降低计算量的同时,得到与相关相减算法几乎相同的性能。 仿真结果证明了该算法的有效性。

关键词 自适应阵列,多级维纳滤波器,降秩处理 中图分类号:TN957 文献标识码:A

文章编号: 1009-5896(2006)05-0936-05

# Efficient Algorithms for Implementing Multistage Wiener Filter in Adaptive Arrays

Ding Qian-jun<sup>1)2</sup> Wang Yong-liang<sup>2</sup> Zhang Yong-shun<sup>1)</sup> <sup>(1)</sup>(Missile Institute, Air Force Engineering University, Sanyuan 713800, China) <sup>(2)</sup>(Key Research Lab, Air Force Radar Academy, Wuhan 430010, China)

**Abstract** Based on the analysis of the algorithms for implementing Multistage Wiener Filter (MWF), the MWF implemented by the Correlation Subtraction Algorithm (CSA) is proved to be an Unitary MWF (UMWF). The rank reduction performance of UMWF is superior to the original MWF proposed by Goldstein, Reed, and Scharf. In this paper, the block matrixes in the CSA are modified to reduce the size of the observation data vectors step by step in the forward recursion of MWF. The modified block matrixes can also be used in the CSA architecture. The new implementing algorithm needs a lower computation complexity, while keeping almost the same performance as the CSA. The validity of the proposed algorithm is proved by the simulation results.

Key words Adaptive array, Multistage Wiener filter, Reduced rank processing

1 引言

多级维纳滤波器<sup>[1]</sup>(Multistage Wiener Filter, MWF)是维 纳滤波器的一种多级等效实现形式,它利用一序列正交投 影,将阵列信号矢量进行多级分解,再进行多级标量维纳滤 波,综合出维纳滤波器的输出误差信号。多级维纳滤波器用 一系列标量维纳滤波器来替代求解维纳滤波器,不需矩阵求 逆,这是因为标量维纳滤波器只需对标量求倒数。更重要的 是,多级维纳滤波器提供了一种新的降秩处理方法,对多级 维纳滤波器在r级处进行截断,即得到降秩多级维纳滤波器,

2004-09-13收到, 2005-01-17改回

国家自然科学基金(60272086),全国高等学校优秀青年教师教学科研奖励计划(TRAPOYT)资助课题

r称为降秩多级维纳滤波器的秩。与基于特征分解的降秩自适应滤波(例如特征干扰相消器、主分量法、交叉谱法)相比,降秩多级维纳滤波器不需要进行特征分解,且降秩性能更好,可工作于更低维的降秩子空间,收敛所需的快拍数更低。自适应阵列处理中,可通过广义旁瓣相消器(Generalized Sidelobe Canceller, GSC)框架将多级维纳滤波器应用于降秩自适应滤波。

根据阻塞矩阵的不同,多级维纳滤波器可用不同的算法 实现。多级维纳滤波器最先由Goldstein、Reed和Scharf提出<sup>[1]</sup>, 其附录A 给出了一种计算阻塞矩阵的方法,称文献[1] 中的多级维纳滤波器实现算法为 GRS-MWF, GRS 为作者名 字的缩写。文献[2,3]则提出了一种有效降低计算量的多级维 纳滤波器实现方法:相关相减算法(Correlation Subtraction Algorithm, CSA),同样记作 CSA-MWF。GRS-MWF中,阻 塞矩阵为长方阵(行数比列数少 1),使得前向递推分解中观 测数据向量的维数逐次降低,有利于降低前向递推的计算量 和存储量。而 CSA-MWF 的阻塞矩阵为方阵,则各级观测数 据向量的维数相同,但由于采用 CSA 结构实现,不需计算 阻塞矩阵,使得计算量较 GRS-MWF 有效降低。

本文首先证明了CSA-MWF中降秩子空间的基向量是 一组正交向量组,即CSA-MWF为酉多级维纳滤波器(Unitary Multistage Wiener Filter, UMWF,即降秩子空间的基向量相互 正交的多级维纳滤波器<sup>[4]</sup>),而GRS-MWF的基向量不具有相 互正交性。由于CSA-MWF是在一组正交基内寻优,因此其 数值稳定性(降秩性能)较GRS-MWF好,仿真结果与本文证明 的结论相一致。在分析前两种多级维纳滤波器实现结构及性 能的基础上,提出了一种新的多级维纳滤波器的有效实现算 法,新算法对CSA-MWF的阻塞矩阵进行改进,使之为长方 阵从而具有GRS-MWF的优点,而且改进后的阻塞矩阵可用 于CSA结构实现,从而具有良好的数值稳定性(降秩性能)且 计算量进一步降低。仿真结果表明,本文的方法可得到与 CSA-MWF几乎相同的性能,但计算量更低。本文在一维自 适应阵列处理应用背景下推导,但其方法可推广到空时自适

#### 2 多级维纳滤波器及其相关相减算法(CSA)实现

多级维纳滤波器是Goldstein、Reed和Scharf最先提出的 <sup>[1]</sup>,如图 1 所示,设阵列数据向量 X(k) 为 N 维向量, $a(\theta_0)$ 为期望信号导向矢量,图 1 中以 N = 5 为例。图 1 中的第一 级 为 广 义 旁 瓣 相 消 器 框 架,其中  $d_0(k) = h_0^H X(k)$ ,  $h_0 = \frac{a(\theta_0)}{\|a(\theta_0)\|}$ ,  $X_0(k) = B_0 X(k)$ ,  $B_0$  为对  $h_0$  的阻塞矩阵,即

 $B_0h_0 = 0$ 。图 1 中的其他级构成维纳滤波器的多级形式,即 多级维纳滤波器,通常将图 1 的完整结构直接称为多级维纳 滤波器。图 1 中,粗线表示向量,细线表示标量。 $B_i$ 为第 *i* 级的阻塞矩阵, $h_i$ 为归一化的 $X_{i-1}(k) 与 d_{i-1}(k)$ 的互相关向 量, $B_ih_i = 0$ 。在前向递推中,由 $X_i(k) = B_iX_{i-1}(k)$ ,  $d_i(k) = h_i^H X_{i-1}(k)$ 将 $X_{i-1}(k)$ 向两个正交的子空间投影;在后 向递推中,通过一系列标量维纳滤波器综合得到阵列输出  $\varepsilon_0(k)$ 。当多级维纳滤波器的级数 r = N - 1时为满秩多级维 纳滤波器,如果在第 r(r < N - 1)级处对多级维纳滤波器进



行截断(令 $d_r(k) = \varepsilon_r(k)$ ), 即为r阶(降秩)多级维纳滤波器。 由图 1 可得,对r阶降秩多级维纳滤波器有

$$\boldsymbol{d}(k) = \left[d_1(k), d_2(k), \cdots, d_r(k)\right]^{\mathrm{T}} = \boldsymbol{T}_r^{\mathrm{H}} \boldsymbol{X}_0(k)$$
(1)

$$\boldsymbol{T}_{r} = \left[\boldsymbol{h}_{1}, \boldsymbol{B}_{1}^{\mathrm{H}} \boldsymbol{h}_{2}, \cdots, \left(\prod_{j=1}^{r-1} \boldsymbol{B}_{j}^{\mathrm{H}}\right) \boldsymbol{h}_{r}\right] = [\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \cdots, \boldsymbol{t}_{r}]$$
(2)

$$= \left(\prod_{j=1}^{i-1} \boldsymbol{B}_{j}^{\mathrm{H}}\right) \boldsymbol{h}_{i}, \quad i = 1, 2, \cdots, r$$
(3)

$$d_i(k) = \boldsymbol{t}_i^{\mathrm{H}} \boldsymbol{X}_0(k) \tag{4}$$

多级维纳滤波器的的自适应权矢量为

t

$$\boldsymbol{W}_{a} = \boldsymbol{h}_{0} - \boldsymbol{B}_{0}^{\mathrm{H}} \boldsymbol{T}_{r} \boldsymbol{W}_{d} = \boldsymbol{h}_{0} - \boldsymbol{B}_{0}^{\mathrm{H}} \boldsymbol{W}_{\mathrm{MWF}}$$
(5)

$$W_{\rm MWF} = T_r W_d \tag{6}$$

$$\boldsymbol{W}_{d} = \left[ w_{1}, -w_{1}w_{2}, w_{1}w_{2}w_{3}, \cdots, (-1)^{r+1}\prod_{i=1}^{r} w_{i} \right] = \boldsymbol{R}_{d}^{-1}\boldsymbol{r}_{dd_{0}}$$
(7)

式(7)中,  $\mathbf{R}_{d} = \mathbb{E}[\mathbf{d}(k)\mathbf{d}^{H}(k)]$ ,  $\mathbf{r}_{dd_{0}} = \mathbb{E}[\mathbf{d}(k)d_{0}^{*}(k)]$ 。

**GRS-MWF** 中阻塞矩阵  $B_i$  为  $(N-i-1) \times (N-i)$  的长方 阵,具体计算方法见文献[1]附录 A,由  $X_i(k) = B_i X_{i-1}(k)$  得,  $X_i(k)$  的维数随 *i* 的增加逐次减 1,经 N-2 次前向递推分解 后  $X_{N-2}(k)$  变为一维标量,最后一级取  $d_{N-1}(k) = \varepsilon_{N-1}(k) = X_{N-2}(k)$ 。  $X_i(k)$  维数逐次降低,有利于降低计算量和存储 量。GRS-MWF 降秩处理带来了处理维数的降低,即  $X_i(k)$  的 维数降低,但降秩处理并不总意味着处理维数的降低,如下 文的 CSA-MWF。

多级维纳滤波器的CSA实现结构<sup>[2]</sup>如图 2 所示, CSA-MWF的阻塞矩阵为

$$\boldsymbol{B}_i = \boldsymbol{I} - \boldsymbol{h}_i \boldsymbol{h}_i^{\mathrm{H}} \tag{8}$$

$$\boldsymbol{X}_{i}(k) = (\boldsymbol{I} - \boldsymbol{h}_{i}\boldsymbol{h}_{i}^{\mathrm{H}})\boldsymbol{X}_{i-1}(k) = \boldsymbol{X}_{i-1}(k) - \boldsymbol{h}_{i}d_{i}(k)$$
(9)

$$X_{0}(k) = X(k) - h_{0}d_{0}(k)$$
(10)

在 CSA-MWF 中, 阻塞矩阵  $B_i$  均为 N 维方阵, 各级的观测 数据  $X_i(k)$  也均为 N 维向量。由式(9),式(10)得,多级维纳 滤波器可用图 2 所示的 CSA 结构实现,图 2 为 r 阶降秩多级 维纳滤波器,截断取  $d_r(k) = \varepsilon_r(k)$ 。可见, CSA-MWF 不需 求解阻塞矩阵,降低了存储量;且 CSA 结构有利于降低计 算量,这是因为计算  $X_i(k) = B_i X_{i-1}(k)$ 需要的计算量为  $O(N^2)$ ,而计算  $X_i(k) = X_{i-1}(k) - h_i d_i(k)$ 需要的计算量仅为 O(N)。



## 3 CSA-MWF 为酉多级维纳滤波器的证明

可以证明, CSA-MWF 为酉多级维纳滤波器, 即

CSA-MWF 中  $[t_1, \dots, t_r]$  为一组标准正交向量组。而 GRS-MWF中 $t_i$ 不满足互相正交,这使得 CSA-MWF 的数值 稳健性较 GRS-MWF 好,后面的仿真结果与证明的结论相一 致。

由图 1 中的递推关系、式(1)~式(4),式(8)及  $B_i^H h_i = 0$ 容易证得, CSA-MWF 中  $[h_0, h_1, \cdots, h_i]$ 为一组标准正交向量组,即

$$\boldsymbol{h}_{i}^{\mathrm{H}}\boldsymbol{h}_{j} = 0, \quad j = 0, 1, \cdots, i-1$$
 (11)

式(11)的证明较为简单,这里从略。

下面证明 CSA-MWF 中  $t_i = h_i$ ,从而证明  $[t_1, \dots, t_r]$ 为一 组标准正交向量组。由  $B_1h_1 = 0$ 得 $h_1^H B_1^H = 0$ ,而 $t_1 = h_1$ ,结 合式(3)得 $t_1^H t_i = 0$ ,  $i = 2, 3, \dots, r$ ,即后级的 $t_i$ 均与 $t_1$  正交, 但一般 $t_i$ 之间并不互相正交,如 GRS-MWF 中的 $t_i$ 便不是互 相正交的。对 CSA-MWF,  $B_i = I - h_i h_i^H$ ,代入式(3)并由式 (11)得

$$\boldsymbol{t}_i = \boldsymbol{h}_i, \quad i = 1, 2, \cdots, r \tag{12}$$

再由  $[h_0, h_1, \dots, h_i]$  为一组标准正交向量组可得, CSA-MWF 中  $[t_1, \dots, t_r]$ 也为一组标准正交向量组,即 CSA-MWF 为酉多 级维纳滤波器。 证毕

实际上,以上证明是文献[5]中求酉多级维纳滤波器正交 基向量的逆问题,因此,可将 CSA-MWF 看作酉多级维纳滤 波器的一种快速(低计算复杂度)实现方式。

# 4 一种改进的多级维纳滤波器 CSA 实现结构 (Modified CSA-MWF, MCSA-MWF)

综上所述, GRS-MWF 中, 阻塞矩阵  $B_i$  为 (N-i-1)× (N-i) 的长方阵,  $X_i(k)$  的维数逐次降低,有利于降低计算 量和存储量。CSA-MWF 是一种酉多级维纳滤波器,具有良 好的数值稳定性。在 CSA-MWF 中,阻塞矩阵  $B_i$  均为 N 维 方阵,各级的观测数据  $X_i(k)$  均为 N 维向量,但由于采用了 图 2 所示的 CSA 结构,不需求解阻塞矩阵,也使得计算量 和存储量降低。这里提出一种改进的多级维纳滤波器 CSA 实现结构,如图 3 所示,称之为 MCSA-MWF。MCSA-MWF 的 阻 塞 矩 阵 采 用 (N-i-1)×(N-i)长方 阵,既利用 CSA-MWF 的 CSA 结构,不需求解阻塞矩阵且降低计算量, 又利用 GRS-MWF 中  $X_i(k)$  的维数逐次降低的优点,在保持 降秩性能的同时进一步降低计算量。MCSA-MWF 综合了前 两者的优点,其计算量比 GRS-MWF,CSA-MWF 都小,仿 真结果表明: MCSA-MWF 具有与 CSA-MWF 几乎相同的性 能。

下面推导 MCSA-MWF, 如图 3 所示:

$$\boldsymbol{h}_0 = \frac{\boldsymbol{a}(\boldsymbol{\theta}_0)}{\|\boldsymbol{a}(\boldsymbol{\theta}_0)\|} \tag{13}$$



图 3 一种改进的多级维纳滤波器 CSA 实现结构(MCSA-MWF)

$$d_0(k) = \boldsymbol{h}_0^{\mathrm{H}} \boldsymbol{X}(k) \tag{14}$$

对 CSA-MWF,  $X_0(k) = B_0 X(k)$ ,  $B_0 = I - h_0 h_0^H$ ,  $B_0 h_0 = 0$ , 定义矩阵(向量)的上标<sup>(j)</sup> 表示取其上 j 行,则  $B_0^{(N-1)} h_0 = 0$ , 可将  $B_0^{(N-1)}$  作为  $(N-1) \times N$  阻塞矩阵代替  $B_0 (= I - h_0 h_0^H)$ , 此替代保留了 X(k) 的全部信息而无任何损失,因此是合理 的。由  $B_0^{(N-1)} = (I_N^{(N-1)} - h_0^{(N-1)} h_0^H)$ , 重新记  $B_0$  为

$$\boldsymbol{B}_{0} = \boldsymbol{I}_{N}^{(N-1)} - \boldsymbol{h}_{0}^{(N-1)} \boldsymbol{h}_{0}^{\mathrm{H}}$$
(15)  
$$\boldsymbol{X}_{*}(k) = \boldsymbol{B}_{*} \boldsymbol{X}(k) = (\boldsymbol{I}^{(N-1)} - \boldsymbol{h}^{(N-1)} \boldsymbol{h}^{\mathrm{H}}) \boldsymbol{X}(k)$$

$$= \mathbf{X}^{(N-1)}(k) - \mathbf{h}_{0}^{(N-1)}d_{0}(k)$$
(16)

特别地, **I**<sub>N</sub><sup>(N-1)</sup>表示 N 维单位阵的上 N-1 行,下面类似。 由式(16) **X**<sub>0</sub>(k) 为 N-1 维向量。

依次类推, MCSA-MWF 第*i*级的前向递推公式如下:

$$\boldsymbol{h}_{i} = \frac{\boldsymbol{r}_{X_{i-1}d_{i-1}}}{\sqrt{\boldsymbol{r}_{X_{i-1}d_{i-1}}^{H} \boldsymbol{r}_{X_{i-1}d_{i-1}}}}$$
(17)

$$d_i(k) = \boldsymbol{h}_i^{\mathrm{H}} \boldsymbol{X}_{i-1}(k) \tag{18}$$

$$\boldsymbol{B}_{i} = \boldsymbol{I}_{N-i}^{(N-i-1)} - \boldsymbol{h}_{i}^{(N-i-1)} \boldsymbol{h}_{i}^{\mathrm{H}}$$
(19)

$$\boldsymbol{X}_{i}(k) = \boldsymbol{B}_{i} \boldsymbol{X}_{i-1}(k) = \boldsymbol{X}_{i-1}^{(N-i-1)}(k) - \boldsymbol{h}_{i}^{(N-i-1)} \boldsymbol{d}_{i}(k)$$
(20)

 $h_i$ 为N-i维,  $X_i(k)$ 为N-i-1维向量,则随着级数i的增加 $X_i(k)$ 维数降低。MCSA-MWF 后向递推公式同 CSA-MWF 和 GRS-MWF。

## 5 计算机仿真及性能分析

#### 5.1 性能度量

在基于 GSC 框架的自适应波束形成中,除通常的性能 度量方法(如阵列方向图、输出信干噪比等)外,还有一种特 殊的度量方法-均方误差(Mean Square Error, MSE)。在基于 GSC 框架的自适应阵列处理中,自适应阵列输出  $y(k) = \varepsilon_0(k)$ ,则自适应阵列输出功率等于 $\varepsilon_0(k)$ 的均方值,  $\varepsilon_0(k)$ 是 GSC 框架中 $d_0(k)$ 与其估计值 $\hat{d}_0(k)$ 之间的误差,则 称 $\varepsilon_0(k)$ 的均方值为均方误差。设 $R_x$ 为由有限快拍数估计得 到的协方差矩阵, R为已知的协方差矩阵,即在无穷快拍数 的理想情况下得到的协方差矩阵;  $W_x$ 表示有限快拍下基于 GSC 框架自适应滤波器(如 GSC,MWF 及其降秩自适应滤波 器等)的自适应权矢量, $W_{opt}$ 表示对应理想情况下的自适应 权矢量;  $R_{x2}$ , $W_{x1}$ 分别表示由不同快拍数据(互不重叠的采 样数据段)计算得到的协方差矩阵、自适应权矢量。定义 MSE 如下的几种形式:

$$MSE = \boldsymbol{W}_{\boldsymbol{X}}^{\mathrm{H}} \boldsymbol{R} \boldsymbol{W}_{\boldsymbol{X}}$$
(21)

$$SMSE = \boldsymbol{W}_{\boldsymbol{X}}^{\mathrm{H}} \boldsymbol{R}_{\boldsymbol{X}} \boldsymbol{W}_{\boldsymbol{X}}$$
(22)

 $MMSE = W_{opt}^{H} R W_{opt}$ (23)

MSE (Mean Square Error)是将采样自适应权矢量 Wx 应用于 理想阵列数据统计得到的结果, SMSE(Sample Mean Square Error)是采样自适应权矢量应用于训练数据本身的结果, MMSE(Minimum Mean Square Error)则是理想自适应权矢量 应用于理想阵列数据统计得到的结果。实际上,由于采样快 拍总是有限的, R, Wont 无法得到, 则 MSE, MMSE 无法 计算得到。另外,采样自适应权矢量不可能应用于训练数据 本身,而只能对后续阵列数据进行滤波,因此, SMSE 的结 果是有欺骗性的。很明显, SMSE 是采样自适应权矢量对自 身训练数据滤波,滤波效果好,而 MSE 是将局部信息应用 于全体,则SMSE < MSE。由式(21),式(23)得,显然 MMSE < MSE。上述 3 种均方误差可用于多级维纳滤波器 的分析与设计,例如可用于自适应阵列性能评价或确定降秩 多级维纳滤波器的秩r。

#### 5.2 计算机仿真

设阵列为N=16元均匀直线阵,阵元间隔取为半波长。 阵列数据中不含期望信号,5个不相关干扰的干扰噪声比均 为 30dB, 干扰角度依次为-35°, -24°, 19°, 36°, 45°。

试验1 多级维纳滤波器的方向图

取快拍数 K = N,降秩多级维纳滤波器的秩等于干扰个 数, 即 r = 5, 图 4 为 GRS-MWF, CSA-MWF, MCSA-MWF 等 3 种多级维纳滤波器所形成的方向图及其与 MVDR-SMI 方向图的比较。MVDR-SMI 完全等效于满秩多级维纳滤波器 (r=15),用作比较的参考,如图 4 所示,在低快拍下 MVDR-SMI 的方向图发生畸变,降秩多级维纳滤波器则可得 到比之好的性能。CSA-MWF, MCSA-MWF 的方向图接近 一致,性能均比 GRS-MWF 好, GRS-MWF 旁瓣较高,这是 因为 GRS-MWF 中 $[t_1, \cdots, t_r]$ 之间无相互正交性。

试验2 数值稳健性比较

取快拍数K = N, r = 5, 图 5为仿真 5次(为了清晰起 见只取5次)得到的3种多级维纳滤波器的方向图。容易看出, CSA-MWF, MCSA-MWF比 GRS-MWF 具有更好的稳健性, 且旁瓣比 GRS-MWF 低。5 次仿真的 CSA-MWF 方向图接近 重合; MCSA-MWF 的方向图稍有发散,但仍接近重合;

GRS-MWF 方向图的稳健性最差。

试验 3 多级维纳滤波器的 MSE, SMSE, MMSE

在仿真中,对式(21),式(23)中的理想协方差矩阵 R 及 理想最优权矢量Wort采用大快拍数计算的方法进行近似(这



图 4 多级维纳滤波器的方向图(r=5)

里取 K = 100000 进行计算)。实际快拍数取 K = N,求出  $W_x$ ,  $R_X$ , 再利用上面计算得到的 $W_{opt}$ , R, 由式(21)~式(23) 分别计算 MSE, SMSE, MMSE。

图 6 为多级维纳滤波器 MSE 随秩 r 变化的关系曲线, 取 100 次仿真平均的结果。对 GRS-MWF, CSA-MWF, MCSA-MWF, 当秩小于干扰个数(r < 5)时, MSE 随秩的增 大而下降;当r>5时曲线随秩上升;在r=5时MSE最小。 这是因为当r≤5时,方向图未发生畸变,随着r的增大干扰 零陷的个数和深度增加,但只有当秩达到干扰数目时才能在 所有干扰方向产生零陷,达到最佳滤波效果,故 MSE 逐渐 变小;当r>5时,多级维纳滤波器的方向图开始发生畸变, 且随 r 的增大畸变愈大, MSE 逐渐增大。因此, 多级维纳滤 波器最佳秩的选择为 MSE 最小处对应 r 的值, 即等于独立 干扰的数目。当 r < 5 时, CSA-MWF, MCSA-MWF 的 MSE 接近一致,均比GRS-MWF低。

图 7 为 SMSE 随多级维纳滤波器的秩变化的曲线,取100 次仿真平均的结果。由于 SMSE 是自适应权矢量应用于自身 训练快拍的结果, SMSE 曲线在 r > 5 时没有像图 6 中 MSE 那样上升,反而下降,且CSA-MWF最低,MCSA-MWF居 中,GRS-MWF最高。



图 7 SMSE 与秩的关系(K=N)

15

| 表1 | 3 种多级维纳滤波器的计算量比较(秩为 r) |
|----|------------------------|
| 衣工 | 3种多级维约滤波品的片异里比较(快力/    |

|          | $X_i(k) = B_i X_{i-1}(k)$ 的总计算量              | $d_i(k) = \boldsymbol{h}_i^{\mathrm{H}} \boldsymbol{X}_{i-1}(k)$ 的总计算量 |
|----------|----------------------------------------------|------------------------------------------------------------------------|
| GRS-MWF  | $K[N^{2} + (N-1)^{2} + \dots + (N-r+1)^{2}]$ | $K[N + (N-1) + \dots + (N-r)]$                                         |
| CSA-MWF  | KN(r)                                        | KN(r+1)                                                                |
| MCSA-MWF | $K[(N-1) + (N-2) + \dots + (N-r)]$           | $K[N + (N-1) + \dots + (N-r)]$                                         |

图 8 为 MMSE 随多级维纳滤波器的秩变化的曲线,由 于 MMSE 是从整体统计特性上考察算法性能的,能反映算 法在一定信号统计特性下的性能,因此 MMSE 是衡量算法 性能的重要指标。图 8 中, CSA-MWF, MCSA-MWF 的 MMSE 曲线接近一致,且在 r=3 处接近最小值,而 GRS-MWF 在 r=5 处才达到好的干扰抑制效果,这说明 CSA-MWF、MCSA-MWF 的降秩性能更好,其原因是 CSA-MWF、MCSA-MWF 的降秩性能更好,其原因是 CSA-MWF, MCSA-MWF 为酉多级维纳滤波器,能用比 GRS-MWF 更小的自适应自由度抑制掉方向性干扰。图 8 反 过来可用于解释图 4 中 GRS-MWF 方向图的高旁瓣现象:由 于酉多级维纳滤波器的降秩性能更好,当r=5 时, CSA-MWF, MCSA-MWF 只用 3 个自适应自由度即可抑制 方向性干扰,其余的 2 个自由度可进一步抑制噪声电平,而 GRS-MWF 中 5 个自由度均被用于抑制方向性干扰,因此 GRS-MWF 方向图的旁瓣较前两者高。



图 8 MMSE 与秩的关系(K=N)

#### 5.3 计算量比较

设降秩多级维纳滤波器的秩为r,快拍数为K,则 3 种r阶多级维纳滤波器 GRS-MWF,CSA-MWF, MCSA-MWF 的计算量(乘法次数)比较如表 1 所示,由于后 向递推综合完全一样,这里指前向递推的计算量。从表 1 可 以 看 出 GRS-MWF 的计算量为 $O(N^2)$ ,而CSA-MWF,MCSA-MWF 的计算量仅为O(N),MCSA-MWF 比 CSA-MWF 的乘法次数降低Kr(r+1)次。可见MCSA-MWF 特别适用于 大型阵且需处理的自适应自由度较多的场合,如复杂干扰环 境下的空时自适应处理。

更重要的是,在实际应用中,多级维纳滤波器的秩需 根据阵列接收数据进行估计(称之为秩选:Rank selection), 常用的秩选方法是:分别计算多级维纳滤波器在级数  $r=1 \sim N-1$ 时的自适应权矢量,再根据自适应权矢量计算多 级维纳滤波器在每个r上的某些度量值(如采样均方误差 SMSE、自适应权矢量的模值等),得到此度量值随秩r的变 化曲线,然后根据某种准则来确定多级维纳滤波器的秩(如设 置 SMSE 的门限值)。又结合上文可知,在多级维纳滤波器 秩选中,MCSA-MWF 比 CSA-MWF 的乘法次数共降低  $K \times 1 \times 2 + K \times 2 \times 3 + \dots + K \times (N-1) \times N$ 次,因此,总的计算 量降低较为可观。

#### 6 结束语

根据阻塞矩阵的不同,分析了两种多级维纳滤波器的实现形式:GRS-MWF,CSA-MWF。GRS-MWF中,观测数据向量 X<sub>i</sub>(k)的维数随 MWF 的级数逐步降低,当满秩处理时降低至一维标量;CSA-MWF 不需求解阻塞矩阵,实现时计算量得到降低,但观测数据向量的维数不变;CSA-MWF 具有比 GRS-MWF 好的稳健性。本文首先证明了 CSA-MWF 是一种酉多级维纳滤波器,并从理论和仿真试验上证明了酉 多级维纳滤波器具有更好的降秩性能。在此基础上提出一种改进的多级维纳滤波器 CSA 实现结构-MCSA-MWF,既利用 CSA-MWF 计算量低及其酉多级维纳滤波器降秩性能好的优点,又利用 GRS-MWF 观测数据向量维数逐步降低的优点,使计算量得到进一步降低。仿真结果表明,MCSA-MWF 具有与 CSA-MWF 接近相同的性能,但实现结构更简单,存储量和计算量更低。

## 参 考 文 献

- Goldstein J S, Reed I S, Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections. *IEEE Trans. on Information Theory*, 1998, 44 (7): 2943 – 2959.
- [2] Ricks D C, Goldstein J S. Efficient architectures for implementing adaptive algorithms. Proceedings of the 2000 Antenna Applications Symposium, Allerton Park, Monticello, IL, Sept. 2000: 29 – 41.
- [3] Ricks D C, Cifuentes P G, Goldstein J S. Adaptive beamforming using multistage Wiener filter with a soft stop. Conference Record of the Thirty – Fifth Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, Nov. 2001: 14011 – 406.
- [4] Weippert M E, Hiemstra J D, Goldstein J S, *et al.*. Insights from the relationship between the multistage Wiener filter and the method of conjugate gradients. 2<sup>nd</sup> IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2002), Rosslyn VA, August 2002: 388 – 392.
- [5] Joham M, Zoltowski M D. Interpretation of the multi-stage nested Wiener filter in the Krylov subspace framework. Tech. Rep. TUM-LNS-TR-00-6, Munich University of Technology, November 2000. Also: Technical Report TR-ECE-00 – 51, Purdue University.
- 丁前军: 男,1977年生,博士生,从事电子对抗、阵列信号处理 技术研究.
- 王永良: 男,1965年生,教授,博士后,博士生导师,主要研究 方向为雷达技术、阵列信号处理、自适应信号处理等.
- 张永顺: 男,1961年生,教授,博士生导师,主要研究方向为防 空武器系统电子对抗等.