2021, 43(4): 1064-1071.
doi: 10.11999/JEIT191049
刊出日期:2021-04-20
针对5G通信技术高传输速率、多业务场景的挑战,该文提出一种组件化的软件定义无线接入网络新架构。该架构在5G接入网集中单元(CU),分布单元(DU),有源天线单元(AAU)架构的基础上,进一步朝组件化方向演进,形成一种由集中控制单元(CCU), CU, DU,射频单元(RU),AAU等组件化通信单元组成的新架构。这种新架构既有利于切片化、虚拟化实现无线接入网,又有利于应用分布式计算技术和硬件加速技术突破通用处理器的计算能力瓶颈,还能降低DU与AAU之间的前传压力。该文还研制了基于此架构的组件化软基站试验原型并进行了测试,结果表明该组件化方案在提供高度灵活性的同时,还能够提升通用处理器软基站的吞吐能力,并有效降低远端站址传输流量。
2018, 40(8): 1949-1955.
doi: 10.11999/JEIT170983
刊出日期:2018-08-01
为了降低译码时的计算复杂度以及减少译码时间,该文通过对牛顿恒等式进行推导得到了(41, 21, 9) QR码不需要计算未知校验子就可求得错误位置多项式系数的代数译码算法,同时也针对改善部分客观地给出了计算复杂度的理论分析。此外,为了进一步降低译码时间,提出判定接收码字中出现不同错误个数的更简化的判断条件。仿真结果表明该文提出算法在不降低Lin算法所达到的译码性能的前提下,降低了译码时间。
2024, 46(1): 277-286.
doi: 10.11999/JEIT221502
刊出日期:2024-01-17
图像超分变率重建方法在公共安全检测、卫星成像、医学和照片恢复等方面有着十分重要的用途。该文对基于生成对抗网络的超分辨率重建方法进行研究,提出一种基于纯合成数据训练的真实世界盲超分算法(Real-ESRGAN)的UNet3+双鉴别器Real-ESRGAN方法(Double Unet3+ Real-ESRGAN, DU3-Real-ESRGAN)。首先,在鉴别器中引入UNet3+结构,从全尺度捕捉细粒度的细节和粗粒度的语义。其次,采用双鉴别器结构,一个鉴别器学习图像纹理细节,另一个鉴别器关注图像边缘,实现图像信息互补。在Set5, Set14, BSD100和Urban100数据集上,与多种基于生成对抗网络的超分重建方法相比,除Set5数据集外,DU3-Real-ESRGAN方法在峰值信噪比(PSNR)、结构相似性(SSIM)和无参图像考评价指标(NIQE)都优于其他方法,产生了更直观逼真的高分辨率图像。
2024, 46(9): 3503-3509.
doi: 10.11999/JEIT240120
刊出日期:2024-09-26
蜂窝网络下的同时同频全双工(CCFD)设备到设备(D2D)组网可以进一步提升网络频谱效率,然而由此引入的残余自干扰(RSI)及蜂窝用户(CU)与D2D用户(DU)之间共享频谱的干扰会严重影响到蜂窝用户的体验。因此,该文为蜂窝网络下同时同频全双工组网设计了两种干扰协调算法,即CU和速率最大化算法(MaxSumCU)与CU最小速率最大化算法(MaxMinCU),在小区频谱效率得到提升的同时尽可能地保证CU的体验。对于MaxSumCU算法,该文以CU和速率为优化目标建立混合整数非线性规划问题(MINLP),其在数学上为非确定性多项式(NP-hard)问题。算法将其分解为功率控制与频谱资源分配两个子问题,并用图形规划找到最优功率解后,使用二向图最大权值匹配算法决定频谱共享的CU与DU。为了保证每一个蜂窝用户体验的公平性,该文设计了MaxMinCU算法用以最大化所有CU速率中的最小值,该算法基于二分查找与二向图最小权值匹配算法来完成用户的资源分配。数值结果表明,与小区和速率最大化(MaxSumCell)设计相比,该文所提的两种算法在提升小区和速率的同时均有效地提升了蜂窝用户的体验。