高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射表面辅助的非正交多址接入系统用户分组、波束赋形与相移的优化

雷维嘉 于顺洪 雷宏江 唐宏

雷维嘉, 于顺洪, 雷宏江, 唐宏. 智能反射表面辅助的非正交多址接入系统用户分组、波束赋形与相移的优化[J]. 电子与信息学报, 2024, 46(3): 858-866. doi: 10.11999/JEIT230329
引用本文: 雷维嘉, 于顺洪, 雷宏江, 唐宏. 智能反射表面辅助的非正交多址接入系统用户分组、波束赋形与相移的优化[J]. 电子与信息学报, 2024, 46(3): 858-866. doi: 10.11999/JEIT230329
LEI Weijia, YU Shunhong, LEI Hongjiang, TANG Hong. Optimization of User Pairing, Beamforming and Phase-shifting for Intelligent Reflecting Surface Assisted Non-Orthogonal Multiple Access Systems[J]. Journal of Electronics & Information Technology, 2024, 46(3): 858-866. doi: 10.11999/JEIT230329
Citation: LEI Weijia, YU Shunhong, LEI Hongjiang, TANG Hong. Optimization of User Pairing, Beamforming and Phase-shifting for Intelligent Reflecting Surface Assisted Non-Orthogonal Multiple Access Systems[J]. Journal of Electronics & Information Technology, 2024, 46(3): 858-866. doi: 10.11999/JEIT230329

智能反射表面辅助的非正交多址接入系统用户分组、波束赋形与相移的优化

doi: 10.11999/JEIT230329
基金项目: 国家自然科学基金(61971080)
详细信息
    作者简介:

    雷维嘉:男,教授,研究方向为无线通信和移动通信技术

    于顺洪:女,硕士生,研究方向为智能反射面和非正交多址接入技术

    雷宏江:男,教授,研究方向为无线通信系统建模与分析、物理层安全

    唐宏:男,教授,研究方向为计算机网络、移动通信、大数据技术与应用

    通讯作者:

    于顺洪 yu.shh@outlook.com

  • 中图分类号: TN92

Optimization of User Pairing, Beamforming and Phase-shifting for Intelligent Reflecting Surface Assisted Non-Orthogonal Multiple Access Systems

Funds: The National Natural Science Foundation of China (61971080)
  • 摘要: 该文研究智能反射表面(IRS)辅助的多天线非正交多址接入(NOMA)网络中用户分组、发送波束赋形、相移等的联合优化问题。系统中1个分组分配1个波束并在组内进行连续干扰消除检测。该文提出一种不依赖于发送波束赋形和IRS相移的用户分组配对策略,将用户分组与其他优化分离,显著降低了优化问题求解的难度和计算复杂度。进一步,联合优化基站发送波束赋形、功率分配和IRS相移矩阵,最小化基站的总发送功率。原始优化问题是一个多变量相互耦合的非凸优化问题,利用松弛变量、连续凸逼近、半定松弛、交替迭代优化等方法将原问题转化为凸问题并求解。仿真结果显示,相较于1个用户1个波束的方案,所提方案在基站天线数较少时性能更优,而在天线数较多时也与该对比方案非常接近,但所提方案的优化计算复杂度更低。而对比采用不同分组算法、随机IRS相移方案、最大比发射方案,以及无IRS的方案,所提方案的性能始终更优。
  • 图  1  IRS 辅助 NOMA 系统模型

    图  2  用户最小速率对基站发射功率的影响,J=6, N=8

    图  3  发射天线数对基站发射功率的影响,N=8

    图  4  IRS 反射单元数对基站发射功率的影响,J=6

    图  5  用户数目对基站发射功率的影响,J=6, N=8

    算法1 优化问题P1的求解算法
     (1) 初始化参数:$c=0 $, ${\lambda _1} $, ${\lambda _2} $,随机取值相移矩阵${\boldsymbol{\varPhi}}^{(0)} $,和
       波束赋形矢量${\boldsymbol{w}}_k^{(0)}$,求解问题P2,$P_{l,i}^{(0)} $得到和$P_{m,1}^{(0)} $
     (2) while;
     (3) ${c_1} = {c_1} + 1 $
     (4)初始化参数:${c_2} = 0 $, ${P_{l,i}} = P_{l,i}^{(0)} $, $ {P_{m,1}} = P_{m,1}^{(0)} $
     (5) while;
     (6) ${c_2} = {c_2} + 1 $
     (7)令${\boldsymbol{ \varPhi}} = {{\boldsymbol{\varPhi}} ^{({c_2} - 1)}} $,求解问题P6,得到${\boldsymbol{W}}_k^{({c_2})} $
     (8)对$ {\boldsymbol{W}}_k^{({c_2})} $进行特征值分解可得${\boldsymbol{w} }_k^{({c_2})}$
     (9)令${ {\boldsymbol{w} }_k} = {\boldsymbol{w} }_k^{({c_2})}$,求解问题P8,得到${{\boldsymbol{V}}^{({c_2})}} $
     (10)对${{\boldsymbol{V}}^{({c_2})}} $进行特征值分解,再对角化得到${{\boldsymbol{\varPhi}} ^{({c_2})}} $
     (11) 由${{\boldsymbol{\varPhi}} ^{({c_2})}} $和${\boldsymbol{w}}_k^{({c_2})} $计算$R_{{\rm{toll}}}^{({c_2})} $
     (12) until ${ {R_{ {\rm{toll} } }^{({c_2})} - R_{ {\rm{toll} } }^{({c_2} - 1)} } / {R_{ {\rm{toll} } }^{({c_2} - 1)} } } \le {\lambda _2}$
     (13) 输出${\boldsymbol{w} }_k^{({c_1})} = {\boldsymbol{w} }_k^{({c_2})}$, $ {{\boldsymbol{\varPhi}} ^{({c_1})}} = {{\boldsymbol{\varPhi}} ^{({c_2})}} $。
     (14)令${{\boldsymbol{w}}_k} = {\boldsymbol{w}}_k^{({c_1})} $, ${\boldsymbol{\varPhi}} = {{\boldsymbol{\varPhi}} ^{({c_1})}} $,求解问题P2,得到$P_{l,i}^{({c_1})} $和
       $P_{m,1}^{({c_1})} $,更新$P_{{\rm{toll} } }^{({c_1})}$。
     (15) until ${ {P_{ {\rm{toll} } }^{({c_1})} - P_{ {\rm{toll} } }^{({c_1} - 1)} } / {P_{ {\rm{toll} } }^{({c_1} - 1)} } } \le {\lambda _1}$
    下载: 导出CSV
  • [1] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
    [2] DING Zhiguo, LV Lu, FANG Fang, et al. A state-of-the-art survey on reconfigurable intelligent surface-assisted non-orthogonal multiple access networks[J]. Proceedings of the IEEE, 2022, 110(9): 1358–1379. doi: 10.1109/JPROC.2022.3174140.
    [3] 冯友宏, 张彦峨, 董国青. 基于分布式智能反射面的物理层安全通信研究[J]. 电子与信息学报, 2023, 45(6): 2081–2088. doi: 10.11999/JEIT220659.

    FENG Youhong, ZHANG Yan’e, and DONG Guoqing. Research on physical layer security communication based on distributed intelligent reflective surface[J]. Journal of Electronics &Information Technology, 2023, 45(6): 2081–2088. doi: 10.11999/JEIT220659.
    [4] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [5] LIU Xiao, LIU Yuanwei, CHEN Yue, et al. RIS enhanced massive non-orthogonal multiple access networks: Deployment and passive beamforming design[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 1057–1071. doi: 10.1109/JSAC.2020.3018823.
    [6] LI Yiqing, JIANG Miao, ZHANG Qi, et al. Joint beamforming design in multi-cluster MISO NOMA reconfigurable intelligent surface-aided downlink communication networks[J]. IEEE Transactions on Communications, 2021, 69(1): 664–674. doi: 10.1109/TCOMM.2020.3032695.
    [7] XIE Ximing, FANG Fang, and DING Zhiguo. Joint optimization of beamforming, phase-shifting and power allocation in a multi-cluster IRS-NOMA network[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7705–7717. doi: 10.1109/TVT.2021.3090255.
    [8] ZUO Jiakuo, LIU Yuanwei, BASAR E, et al. Intelligent reflecting surface enhanced millimeter-wave NOMA systems[J]. IEEE Communications Letters, 2020, 24(11): 2632–2636. doi: 10.1109/LCOMM.2020.3009158.
    [9] KIMY B, LIM S, KIM H, et al. Non-orthogonal multiple access in a downlink multiuser beamforming system[C]. 2013 IEEE Military Communications Conference, San Diego, USA, 2013: 1278–1283.
    [10] ZHU Lipeng, ZHANG Jun, XIAO Zhenyu, et al. Optimal user pairing for downlink non-orthogonal multiple access (NOMA)[J]. IEEE Wireless Communications Letters, 2019, 8(2): 328–331. doi: 10.1109/LWC.2018.2853741.
    [11] DING Zhiguo, FAN Pingzhi, and POOR H V. Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6010–6023. doi: 10.1109/TVT.2015.2480766.
    [12] CHI C Y, LI W C, and LIN C H. Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications[M]. Boca Raton: CRC Press, 2017: 217–218.
    [13] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2009: 131–133.
    [14] YAN Wenjing, YUAN Xiaojun, HE Zhenqing, et al. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1793–1808. doi: 10.1109/JSAC.2020.3000811.
    [15] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  172
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-07-28
  • 网络出版日期:  2023-08-10
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回