高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

经颅磁刺激对老年大鼠工作记忆相关跨脑区网络协同作用的影响

郭苗苗 翟昊迪 吉利辉 王田 徐桂芝

郭苗苗, 翟昊迪, 吉利辉, 王田, 徐桂芝. 经颅磁刺激对老年大鼠工作记忆相关跨脑区网络协同作用的影响[J]. 电子与信息学报, 2024, 46(4): 1468-1478. doi: 10.11999/JEIT230291
引用本文: 郭苗苗, 翟昊迪, 吉利辉, 王田, 徐桂芝. 经颅磁刺激对老年大鼠工作记忆相关跨脑区网络协同作用的影响[J]. 电子与信息学报, 2024, 46(4): 1468-1478. doi: 10.11999/JEIT230291
GUO Miaomiao, ZHAI Haodi, JI Lihui, WANG Tian, XU Guizhi. Effect of Transcranial Magnetic Stimulation on Inter-brain Region Networks of Aged Rats during Working Memory Task[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1468-1478. doi: 10.11999/JEIT230291
Citation: GUO Miaomiao, ZHAI Haodi, JI Lihui, WANG Tian, XU Guizhi. Effect of Transcranial Magnetic Stimulation on Inter-brain Region Networks of Aged Rats during Working Memory Task[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1468-1478. doi: 10.11999/JEIT230291

经颅磁刺激对老年大鼠工作记忆相关跨脑区网络协同作用的影响

doi: 10.11999/JEIT230291
基金项目: 国家自然科学基金(51737003, 51707054),国家重点研发计划(2022YFC2402203),国家自然科学基金国际合作与交流项目(523201050),河北省自然科学基金(E2021202222),河北省基础研究计划(18963001D),省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学)优秀青年创新基金(EERI_OY2021009),河北省省级科技计划资助(225676163GH)
详细信息
    作者简介:

    郭苗苗:女,博士,副教授,研究方向为脑认知与神经工程

    翟昊迪:男,硕士生,研究方向为生物电磁与神经调控

    吉利辉:男,硕士生,研究方向为认知与神经工程

    王田:女,博士生,研究方向为生物电磁与神经调控

    徐桂芝:女,博士,教授,研究方向为生物电磁技术

    通讯作者:

    郭苗苗 gmm@hebut.edu.cn

  • 中图分类号: TN911.7; R318; R338

Effect of Transcranial Magnetic Stimulation on Inter-brain Region Networks of Aged Rats during Working Memory Task

Funds: The National Natural Science Foundation of China (51737003, 51707054), The National Key Research and Development Program project (2022YFC2402203), The National Natural Science Foundation International Cooperation and exchange project (523201050), The Natural Science Foundation of Hebei Province (E2021202222), The Basic Research Program of Hebei Province (18963001D), The Excellent Youth Innovation Fund of the State Key Laboratory of Reliability and Intelligence of Electrical Equipment (Hebei University of Technology) (EERI_OY2021009), S&T Program of Hebei (225676163GH)
  • 摘要: 经颅磁刺激(TMS)因其可以非侵入性地探测和调制大脑皮层兴奋性和功能,已被广泛地应用于改善大脑认知功能等临床神经调控领域。工作记忆的功能实现需要多个脑区的同步活动,该文将行为学与电生理学相结合,通过建立跨脑区的因果网络连接,从记忆相关脑区间协同作用的角度探究不同模式的TMS对大脑认知功能的调控机制。首先对老年威斯塔大鼠分别实施重复经颅磁刺激(rTMS)及间歇性θ节律刺激(iTBS),并设置空白对照组,通过在体多通道微电极阵列采集大鼠工作记忆任务中的局部场电位信号(LFPs);之后基于定向传递函数构建LFPs脑因果网络;最后通过对比行为学结果差异、各脑区因果网络参数等,探索不同模式TMS对老年大鼠工作记忆行为学及脑区之间信息协同作用的影响规律。结果表明,rTMS组和iTBS组大鼠执行正确工作记忆任务的平均天数减少,平均正确率高于空白对照组。经过刺激后,rTMS组和iTBS组前额叶和海马双向网络连接明显增强,信息流强度和因果流向性得到显著提升(P<0.05)。因此,rTMS和iTBS模式均能促进老年大鼠海马和前额叶脑区间的信息交流,从而使老年大鼠的工作记忆能力得到改善。
  • 图  1  两种TMS模式示意图

    图  2  T迷宫任务

    图  3  4组大鼠的行为学正确率及学会天数

    图  4  4组大鼠${\text{θ}} $频段和${\text{γ}} $频段前额叶和海马双向网络

    图  5  4组大鼠跨脑区${\text{θ}} $频段和${\text{γ}} $频段的连接密度和全局效率

    图  6  四组大鼠${\text{θ}} $频段和${\text{γ}} $频段前额叶和海马双向信息流随时间变化曲线

    图  7  4组大鼠${\text{θ}} $频段和${\text{γ}} $频段前额叶和海马双向信息流峰值

    图  8  4组大鼠各频段因果流向及平均因果流向值

  • [1] FITZGERALD P B, FOUNTAIN S, and DASKALAKIS Z J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition[J]. Clinical Neurophysiology, 2006, 117(12): 2584–2596. doi: 10.1016/j.clinph.2006.06.712.
    [2] KAKUDA W, ABO M, KOBAYASHI K, et al. Anti-spastic effect of low-frequency rTMS applied with occupational therapy in post-stroke patients with upper limb hemiparesis[J]. Brain Injury, 2011, 25(5): 496–502. doi: 10.3109/02699052.2011.559610.
    [3] DE WITTE S, BAEKEN C, PULOPULOS M M, et al. The effect of neurostimulation applied to the left dorsolateral prefrontal cortex on post-stress adaptation as a function of depressive brooding[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 96: 109687. doi: 10.1016/j.pnpbp.2019.109687.
    [4] WANG Lu, CHEN Xingui, WU Yang, et al. Intermittent theta burst stimulation (iTBS) adjustment effects of schizophrenia: Results from an exploratory outcome of a randomized double-blind controlled study[J]. Schizophrenia Research, 2020, 216: 550–553. doi: 10.1016/j.schres.2019.12.008.
    [5] RAZZA L B, LUETHI M S, ZANÃO T, et al. Transcranial direct current stimulation versus intermittent theta-burst stimulation for the improvement of working memory performance[J]. International Journal of Clinical and Health Psychology, 2023, 23(1): 100334. doi: 10.1016/j.ijchp.2022.100334.
    [6] VIENA T D, LINLEY S B, and VERTES R P. Inactivation of nucleus reuniens impairs spatial working memory and behavioral flexibility in the rat[J]. Hippocampus, 2018, 28(4): 297–311. doi: 10.1002/hipo.22831.
    [7] BINDER S, MÖLLE M, LIPPERT M, et al. Monosynaptic hippocampal-prefrontal projections contribute to spatial memory consolidation in mice[J]. Journal of Neuroscience, 2019, 39(35): 6978–6991. doi: 10.1523/JNEUROSCI.2158-18.2019.
    [8] WANG Gongwu and CAI Jingxia. Disconnection of the hippocampal–prefrontal cortical circuits impairs spatial working memory performance in rats[J]. Behavioural Brain Research, 2006, 175(2): 329–336. doi: 10.1016/j.bbr.2006.09.002.
    [9] WU Xingqi, JI Gongjun, GENG Zhi, et al. Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer's disease: A randomized controlled trial[J]. Brain Stimulation, 2022, 15(1): 35–45. doi: 10.1016/j.brs.2021.11.007.
    [10] 徐桂芝, 王宁, 郭苗苗, 等. 高频重复经颅磁刺激后大鼠工作记忆局部场电位时频特征与相干性差异分析[J]. 生物医学工程学杂志, 2020, 37(5): 756–764. doi: 10.7507/1001-5515.201912083.

    XU Guizhi, WANG Ning, GUO Miaomiao, et al. Analysis of time-frequency characteristics and coherence of local field potentials during working memory task of rats after high-frequency repeated transcranial magnetic stimulation[J]. Journal of Biomedical Engineering, 2020, 37(5): 756–764. doi: 10.7507/1001-5515.201912083.
    [11] CHANG C W, LO Y C, LIN Shenghuang, et al. Modulation of theta-band local field potential oscillations across brain networks with central thalamic deep brain stimulation to enhance spatial working memory[J]. Frontiers in Neuroscience, 2019, 13: 1269. doi: 10.3389/fnins.2019.01269.
    [12] 骆清铭. 脑成像与脑网络[J]. 生物化学与生物物理进展, 2012, 39(6): 497. doi: 10.3724/SP.J.1206.2012.00280.

    LUO Qingming. Brain imaging and brain networks[J]. Progress in Biochemistry and Biophysics, 2012, 39(6): 497. doi: 10.3724/SP.J.1206.2012.00280.
    [13] PLACE R, FAROVIK A, BROCKMANN M, et al. Bidirectional prefrontal-hippocampal interactions support context-guided memory[J]. Nature Neuroscience, 2016, 19(8): 992–994. doi: 10.1038/nn.4327.
    [14] YAO Qun, TANG Fanyu, WANG Yingying, et al. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: A randomized clinical trial[J]. Brain Stimulation, 2022, 15(4): 910–920. doi: 10.1016/j.brs.2022.06.004.
    [15] BULTEAU S, LAURIN A, PERE M, et al. Intermittent theta burst stimulation (iTBS) versus 10 Hz high-frequency repetitive transcranial magnetic stimulation (rTMS) to alleviate treatment-resistant unipolar depression: A randomized controlled trial (THETA-DEP)[J]. Brain Stimulation, 2022, 15(3): 870–880. doi: 10.1016/j.brs.2022.05.011.
    [16] HOY K E, EMONSON M R L, BAILEY N W, et al. Gamma connectivity predicts response to intermittent Theta Burst Stimulation in Alzheimer's disease: A randomized controlled trial[J]. Neurobiology of Aging, 2023, 132: 13–23. doi: 10.1016/j.neurobiolaging.2023.08.006.
    [17] XIAO Guixian, WU Yue, YAN Yibing, et al. Optimized magnetic stimulation induced hypoconnectivity within the executive control network yields cognition improvements in Alzheimer’s patients[J]. Frontiers in Aging Neuroscience, 2022, 14: 847223. doi: 10.3389/fnagi.2022.847223.
    [18] HUANG Yingzu, EDWARDS M J, ROUNIS E, et al. Theta burst stimulation of the human motor cortex[J]. Neuron, 2005, 45(2): 201–206. doi: 10.1016/j.neuron.2004.12.033.
    [19] 赵松, 刘丹, 罗小元, 等. 经颅磁声刺激下分数阶扩展Hindmarsh-Rose神经元放电特性分析[J]. 电子与信息学报, 2022, 44(2): 534–542. doi: 10.11999/JEIT210097.

    ZHAO Song, LIU Dan, LUO Xiaoyuan, et al. Firing characteristics analysis of the fractional-order extended Hindmarsh-Rose neuronal model under transcranial magneto-acoustical stimulation[J]. Journal of Electronics & Information Technology, 2022, 44(2): 534–542. doi: 10.11999/JEIT210097.
  • 加载中
图(8)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  25
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回