高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于索引调制的RIS辅助SIMO通信系统信号检测算法

景小荣 马玉丹 万宇 陈前斌

景小荣, 马玉丹, 万宇, 陈前斌. 基于索引调制的RIS辅助SIMO通信系统信号检测算法[J]. 电子与信息学报, 2022, 44(7): 2382-2391. doi: 10.11999/JEIT211468
引用本文: 景小荣, 马玉丹, 万宇, 陈前斌. 基于索引调制的RIS辅助SIMO通信系统信号检测算法[J]. 电子与信息学报, 2022, 44(7): 2382-2391. doi: 10.11999/JEIT211468
JING Xiaorong, MA Yudan, WAN Yu, CHEN Qianbin. Signal Detection Algorithm of RIS-Assisted SIMO Communication System with Index Modulation[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2382-2391. doi: 10.11999/JEIT211468
Citation: JING Xiaorong, MA Yudan, WAN Yu, CHEN Qianbin. Signal Detection Algorithm of RIS-Assisted SIMO Communication System with Index Modulation[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2382-2391. doi: 10.11999/JEIT211468

基于索引调制的RIS辅助SIMO通信系统信号检测算法

doi: 10.11999/JEIT211468
基金项目: 国家自然科学基金(61701062),重庆市基础与前沿研究计划项目(cstc2019jcyj-msxmX0079)
详细信息
    作者简介:

    景小荣:男,1974年生,博士,教授,博士生导师,研究方向为MIMO、毫米波等系统中的信号处理

    马玉丹:女,1997年生,硕士生,研究方向为可重构智能表面系统中信号检测技术

    万宇:女,1997年生,硕士生,研究方向为可重构智能表面及索引调制技术

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、下一代移动通信网络、异构蜂窝网络等

    通讯作者:

    景小荣 jingxr@cqupt.edu.cn

  • 中图分类号: TN92

Signal Detection Algorithm of RIS-Assisted SIMO Communication System with Index Modulation

Funds: The National Natural Science Foundation of China (61701062), Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0079)
  • 摘要: 面对未来无线移动通信对通信质量和频谱效率的更高要求,该文融合索引调制(IM)与可重构智能表面(RIS)技术,建立基于IM的RIS辅助单输入多输出(SIMO)通信系统架构,并提出一种基于变分贝叶斯推断(VBI)的信号检测算法。首先,在该系统中,RIS单元被划分为若干子块,利用RIS子块的激活状态传递附加信息;接着,利用VBI给出激活RIS子块对应的相移矢量与待检测信号的近似后验分布;最后,利用RIS相移矢量近似后验分布的对数零梯度值结合正交匹配追踪算法(OMP)恢复出索引信息比特,进而利用待检测信号对数零梯度值,恢复出发送信号。同时,从理论上推导了基于IM的RIS辅助SIMO系统平均速率。仿真结果表明,与传统RIS辅助的SIMO通信系统相比,基于IM的RIS辅助SIMO系统具有更高的系统平均速率;并且与现有算法相比,该文算法具有更低的误比特率。
  • 图  1  基于IM的RIS辅助SIMO系统模型图

    图  2  用户端发送比特数据结构

    图  3  不同调制方式及不同RIS分组方案下检测性能比较

    图  4  不同RIS单元数下检测性能随接收天线数$ {N_{\text{r}}} $变化曲线

    图  5  检测性能随导频长度$ {L_{\text{p}}} $变化曲线

    图  6  不同导频长度$ {L_{\text{p}}} $下系统平均速率随接收天线数$ {N_{\text{r}}} $变化曲线

    图  7  检测性能随分组数变化曲线图

    图  8  不同RIS分组数对系统平均速率的影响

    图  9  系统平均速率随SNR变化曲线图

    图  10  本文算法与其它算法检测性能对比曲线图

    表  1  索引比特对应两种分组原则下RIS相移矩阵

    索引比特组索引$ k $与分组方案1对应的${{\boldsymbol{\theta}} _k}$与分组方案2对应的${{\boldsymbol{\theta}} _k}$
    $ \left[ {\begin{array}{*{20}{c}} 0&0 \end{array}} \right] $1$ {\left[ {\begin{array}{*{20}{c}} {{\theta _1}}&{{\theta _2}}&0&0&0&0&0&0 \end{array}} \right]^{\text{T}}} $$ {\left[ {\begin{array}{*{20}{c}} 0&{{\theta _2}}&0&0&0&0&0&{{\theta _8}} \end{array}} \right]^{\text{T}}} $
    $ \left[ {\begin{array}{*{20}{c}} 0&1 \end{array}} \right] $2$ {\left[ {\begin{array}{*{20}{c}} 0&0&{{\theta _3}}&{{\theta _4}}&0&0&0&0 \end{array}} \right]^{\text{T}}} $$ {\left[ {\begin{array}{*{20}{c}} {{\theta _1}}&0&0&{{\theta _4}}&0&0&0&0 \end{array}} \right]^{\text{T}}} $
    $ \left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right] $3$ {\left[ {\begin{array}{*{20}{c}} 0&0&0&0&{{\theta _5}}&{{\theta _6}}&0&0 \end{array}} \right]^{\text{T}}} $$ {\left[ {\begin{array}{*{20}{c}} 0&0&{{\theta _3}}&0&0&0&{{\theta _7}}&0 \end{array}} \right]^{\text{T}}} $
    $ \left[ {\begin{array}{*{20}{c}} 1&1 \end{array}} \right] $4$ {\left[ {\begin{array}{*{20}{c}} 0&0&0&0&0&0&{{\theta _7}}&{{\theta _8}} \end{array}} \right]^{\text{T}}} $$ {\left[ {\begin{array}{*{20}{c}} 0&0&0&0&{{\theta _5}}&{{\theta _6}}&0&0 \end{array}} \right]^{\text{T}}} $
    下载: 导出CSV
  • [1] DI RENZO M, DEBBAH M, PHAN-HUY D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 129. doi: 10.1186/s13638-019-1438-9
    [2] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
    [3] LIN Shaoe, ZHENG Beixiong, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces with reflection pattern modulation: Beamforming design and performance analysis[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 741–754. doi: 10.1109/TWC.2020.3028198
    [4] WANG Xinyi, FEI Zesong, GUO Jing, et al. RIS-assisted spectrum sharing between MIMO radar and MU-MISO communication systems[J]. IEEE Wireless Communications Letters, 2021, 10(3): 594–598. doi: 10.1109/LWC.2020.3039369
    [5] PANG Xiaowei, SHENG Min, ZHAO Nan, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164–170. doi: 10.1109/MWC.010.2000528
    [6] BASAR E. Index modulation techniques for 5G wireless networks[J]. IEEE Communications Magazine, 2016, 54(7): 168–175. doi: 10.1109/MCOM.2016.7509396
    [7] CANBILEN A E, BASAR E, and IKKI S S. Reconfigurable intelligent surface-assisted space shift keying[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1495–1499. doi: 10.1109/LWC.2020.2994930
    [8] FENG Lei, QUE Xiaoyu, YU Peng, et al. IRS assisted multiple user detection for uplink URLLC non-orthogonal multiple access[C]. IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, Canada, 2020: 1314–1315.
    [9] LI Wei, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Joint channel estimation and signal recovery in RIS-assisted multi-user MISO communications[C]. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 2021: 1–6.
    [10] ALBINSAID H, SINGH K, BANSAL A, et al. Multiple antenna selection and successive signal detection for SM-based IRS-aided Communication[J]. IEEE Signal Processing Letters, 2021, 28: 813–817. doi: 10.1109/LSP.2021.3071981
    [11] KHAN S, KHAN K S, HAIDER N, et al. Deep-learning-aided detection for reconfigurable intelligent surfaces[EB/OL]. https://arxiv.org/abs/1910.09136, 2020.
    [12] MESLEH R Y, HAAS H, SINANOVIC S, et al. Spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2228–2241. doi: 10.1109/TVT.2007.912136
    [13] IDOWU-BISMARK O, OYELEKE O, and ILESANMI O. Index modulation-aided orthogonal frequency division multiplexing and its applications[J]. International Journal of Networks and Communications, 2019, 9(3): 97–102. doi: 10.5923/j.ijnc.20190903.02
    [14] KADDOUM G, AHMED M F A, and NIJSURE Y. Code index modulation: A high data rate and energy efficient communication system[J]. IEEE Communications Letters, 2015, 19(2): 175–178. doi: 10.1109/LCOMM.2014.2385054
    [15] MESLEH R, HAAS H, AHN C W, et al. Spatial modulation-a new low complexity spectral efficiency enhancing technique[C]. 2006 First International Conference on Communications and Networking in China, Beijing, China, 2006: 1–5.
    [16] JEGANATHAN J, GHRAYEB A, and SZCZECINSKI L. Spatial modulation: Optimal detection and performance analysis[J]. IEEE Communications Letters, 2008, 12(8): 545–547. doi: 10.1109/LCOMM.2008.080739
    [17] BAI Guo, CHENG Yufan, TANG Wanbin, et al. An innovative low-complexity detection algorithm for spatial modulation[C]. 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 2017: 38–42.
    [18] WANG Jintao, JIA Shuyun, and SONG Jian. Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme[J]. IEEE Transactions on Wireless Communications, 2012, 11(4): 1605–1615. doi: 10.1109/TWC.2012.030512.111635
    [19] ZHENG Jianping and LIU Qin. Low-complexity soft-decision detection of coded OFDM with index modulation[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7759–7763. doi: 10.1109/TVT.2018.2822943
    [20] WEI Li and ZHENG Jianping. Approximate message passing-aided iterative channel estimation and data detection of OFDM-IM in doubly selective channels[J]. IEEE Access, 2019, 7: 133410–133420. doi: 10.1109/ACCESS.2019.2941233
    [21] BASAR E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G[J]. IEEE Transactions on Communications, 2020, 68(5): 3187–3196. doi: 10.1109/TCOMM.2020.2971486
    [22] WINN J and BISHOP C M. Variational message passing[J]. The Journal of Machine Learning Research, 2005, 6: 661–694.
    [23] 申滨, 吴和彪, 崔太平, 等. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测[J]. 电子与信息学报, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270

    SHEN Bin, WU Hebiao, CUI Taiping, et al. An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA system[J]. Journal of Electronics &Information Technology, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270
    [24] PARKER J T, SCHNITER P, and CEVHER V. Bilinear generalized approximate message passing—part II: Applications[J]. IEEE Transactions on Signal Processing, 2014, 62(22): 5854–5867. doi: 10.1109/TSP.2014.2357773
    [25] BJORNSON E, MATTHAIOU M, and DEBBAH M. A new look at dual-hop relaying: Performance limits with hardware impairments[J]. IEEE Transactions on Communications, 2013, 61(11): 4512–4525. doi: 10.1109/TCOMM.2013.100913.130282
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  545
  • HTML全文浏览量:  347
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 修回日期:  2022-03-16
  • 网络出版日期:  2022-04-19
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回