高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超宽带太赫兹通信中天线结构设计及其波束色散影响分析

郝万明 尤晓蓓 孙钢灿 朱政宇

郝万明, 尤晓蓓, 孙钢灿, 朱政宇. 超宽带太赫兹通信中天线结构设计及其波束色散影响分析[J]. 电子与信息学报, 2023, 45(1): 200-207. doi: 10.11999/JEIT211290
引用本文: 郝万明, 尤晓蓓, 孙钢灿, 朱政宇. 超宽带太赫兹通信中天线结构设计及其波束色散影响分析[J]. 电子与信息学报, 2023, 45(1): 200-207. doi: 10.11999/JEIT211290
HAO Wanming, YOU Xiaobei, SUN Gangcan, ZHU Zhengyu. Design of Antenna Structure and Analysis of Beam Split Effect in Ultra-BandWidth Terahertz Communications[J]. Journal of Electronics & Information Technology, 2023, 45(1): 200-207. doi: 10.11999/JEIT211290
Citation: HAO Wanming, YOU Xiaobei, SUN Gangcan, ZHU Zhengyu. Design of Antenna Structure and Analysis of Beam Split Effect in Ultra-BandWidth Terahertz Communications[J]. Journal of Electronics & Information Technology, 2023, 45(1): 200-207. doi: 10.11999/JEIT211290

超宽带太赫兹通信中天线结构设计及其波束色散影响分析

doi: 10.11999/JEIT211290
详细信息
    作者简介:

    郝万明:男,副教授,主要研究方向为毫米波通信、太赫兹通信、大规模MIMO技术、物理层安全技术、智能超表面技术等

    尤晓蓓:女,硕士生,研究方向为太赫兹通信、智能反射面技术等

    孙钢灿:男,教授,主要研究方向为深度学习、机器学习、无线通信、物理层安全技术等

    朱政宇:男,副教授,主要研究方向为智能反射面技术、物理层安全技术、无线通信与信号处理等

    通讯作者:

    孙钢灿 iegcsun@zzu.edu.cn

  • 中图分类号: TN82; TN92

Design of Antenna Structure and Analysis of Beam Split Effect in Ultra-BandWidth Terahertz Communications

  • 摘要: 为克服超宽带太赫兹通信中的波束色散,当前已设计了多种基于实时延(TTD)的天线结构,但其功耗大、复杂度高。为解决这一问题,该文提出一种低功耗、低复杂度的基于串行等间距延时器的稀疏射频链天线结构。通过联合优化延时器时延和移相器相位,可以改变子载波波束方向,实现多载波波束扩展与波束聚拢,从而为不同分布场景的用户服务。具体而言,在所提天线结构下,提出一种优化延时器时延和移相器相位的方案将多载波波束扩散到不同方向,实现波束扩展,以服务分布在不同方向上的用户。然后,通过调节时延和相位使所有载波波束对准同一方向,实现波束聚拢,以服务分布在同一方向上的用户。仿真结果表明了所设计天线结构和所提优化方案的有效性。
  • 图  1  单射频链多天线结构

    图  2  ULA 结构窄带与宽带系统下的波束模式

    图  3  多用户分布场景

    图  4  基于串行等间距延时器的稀疏射频链天线结构

    图  5  狄利克雷函数图

    图  6  传统天线结构和所提天线结构所形成的多载波波束方向

    图  7  传统天线结构和所提天线结构所形成的波束增益

    图  8  基于串行等间距延时器的稀疏射频链天线结构与每个延时器所连接移相器个数的关系

  • [1] AKYILDIZ I F, JORNET J M, and HAN Chong. Terahertz band: Next frontier for wireless communications[J]. Physical Communication, 2014, 12: 16–32. doi: 10.1016/j.phycom.2014.01.006
    [2] RAPPAPORT T S, XING Yunchou, KANHERE O, et al. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019, 7: 78729–78757. doi: 10.1109/ACCESS.2019.2921522
    [3] 谢莎, 李浩然, 李玲香, 等. 太赫兹通信技术综述[J]. 通信学报, 2020, 41(5): 168–186. doi: 10.11959/j.issn.1000-436x.2020107

    XIE Sha, LI Haoran, LI Lingxiang, et al. Survey of terahertz communication technology[J]. Journal on Communications, 2020, 41(5): 168–186. doi: 10.11959/j.issn.1000-436x.2020107
    [4] SONG H J and NAGATSUMA T. Present and future of terahertz communications[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 256–263. doi: 10.1109/TTHZ.2011.2159552
    [5] LIN Cen and LI Y L. Terahertz communications: An array-of-subarrays solution[J]. IEEE Communications Magazine, 2016, 54(12): 124–131. doi: 10.1109/MCOM.2016.1600306CM
    [6] 马静艳, 张忠皓, 李福昌, 等. 太赫兹通信关键技术与发展愿景[J]. 邮电设计技术, 2020(4): 1–5. doi: 10.12045/j.issn.1007-3043.2020.04.001

    MA Jingyan, ZHANG Zhonghao, LI Fuchang, et al. Key technology and development vision of terahertz communication[J]. Designing Techniques of Posts and Telecommunications, 2020(4): 1–5. doi: 10.12045/j.issn.1007-3043.2020.04.001
    [7] GAO Xinyu, DAI Linglong, and SAYEED A M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications[J]. IEEE Communications Magazine, 2018, 56(4): 211–217. doi: 10.1109/MCOM.2018.1600727
    [8] CAI Mingming, LANEMAN J N, and HOCHWALD B. Carrier aggregation for phased-array analog beamforming with beam squint[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–7.
    [9] CHEN Yun, XIONG Yifeng, CHEN Da, et al. Hybrid precoding for WideBand millimeter wave MIMO systems in the face of beam squint[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1847–1860. doi: 10.1109/TWC.2020.3036945
    [10] CHEN Yun, CHEN Da, and JIANG Tao. Beam-squint mitigating in reconfigurable intelligent surface aided wideband MmWave communications[C]. 2021 IEEE Wireless Communications and Networking Conference, Nanjing, China, 2021: 1–6.
    [11] WAN Qian, FANG Jun, CHEN Zhi, et al. Hybrid precoding and combining for millimeter Wave/Sub-THz MIMO-OFDM systems with beam squint effects[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 8314–8319. doi: 10.1109/TVT.2021.3093095
    [12] TAN Jingbo and DAI Linglong. Delay-phase precoding for THz massive MIMO with beam split[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6.
    [13] GAO Feifei, WANG Bolei, XING Chengwen, et al. Wideband beamforming for hybrid massive MIMO terahertz communications[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1725–1740. doi: 10.1109/JSAC.2021.3071822
    [14] ZHAI Bangzhao, ZHU Yilun, TANG Aimin, et al. THzPrism: Frequency-based beam spreading for terahertz communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(6): 897–900. doi: 10.1109/LWC.2020.2974468
    [15] 崔苗, 喻鑫, 李学易, 等. 多用户多载波无线携能通信系统的上下行联合资源分配[J]. 电子与信息学报, 2019, 41(6): 1359–1364. doi: 10.11999/JEIT180762

    CUI Miao, YU Xin, LI Xueyi, et al. Joint downlink and uplink resource allocation for multi-user multi-carrier simultaneous wireless information and power transfer systems[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1359–1364. doi: 10.11999/JEIT180762
    [16] ORFANIDIS S J. Electromagnetic Waves and Antennas[M]. New Brunswick: Rutgers University, 2002: 632–659.
    [17] CAI Mingming, GAO Kang, NIE Ding, et al. Effect of wideband beam squint on codebook design in phased-array wireless systems[C]. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–6.
    [18] BALANIS C A. Antenna Theory: Analysis and Design[M]. 4th ed. Hoboken: John Wiley & Sons, 2016.
    [19] 胡昌海, 王任, 陈传升, 等. 平面相控阵超大角度扫描的阵因子分析[J]. 物理学报, 2021, 70(9): 098401. doi: 10.7498/aps.70.20201850

    HU Changhai, WANG Ren, CHEN Chuansheng, et al. Array factor analysis for untra-wide-angle scanning performance of planar phased arrays[J]. Acta Physica Sinica, 2021, 70(9): 098401. doi: 10.7498/aps.70.20201850
    [20] HASHEMI H, CHU T S, and RODERICK J. Integrated true-time-delay-based ultra-wideband array processing[J]. IEEE Communications Magazine, 2008, 46(9): 162–172. doi: 10.1109/MCOM.2008.4623722
  • 加载中
图(8)
计量
  • 文章访问数:  979
  • HTML全文浏览量:  378
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-04-10
  • 录用日期:  2022-05-05
  • 网络出版日期:  2022-05-09
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回