高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频低噪声放大器提高三阶交截点方法探讨

赵巾翔 汪峰 于汉超 王魁松 张胜利 梁晓新 阎跃鹏

赵巾翔, 汪峰, 于汉超, 王魁松, 张胜利, 梁晓新, 阎跃鹏. 射频低噪声放大器提高三阶交截点方法探讨[J]. 电子与信息学报, 2023, 45(1): 134-149. doi: 10.11999/JEIT211164
引用本文: 赵巾翔, 汪峰, 于汉超, 王魁松, 张胜利, 梁晓新, 阎跃鹏. 射频低噪声放大器提高三阶交截点方法探讨[J]. 电子与信息学报, 2023, 45(1): 134-149. doi: 10.11999/JEIT211164
ZHAO Jinxiang, WANG Feng, YU Hanchao, WANG Kuisong, ZHANG Shengli, LIANG Xiaoxin, YAN Yuepeng. Discussion on Improving the Third Order Intersection Point of Radio Frequency Low Noise Amplifier[J]. Journal of Electronics & Information Technology, 2023, 45(1): 134-149. doi: 10.11999/JEIT211164
Citation: ZHAO Jinxiang, WANG Feng, YU Hanchao, WANG Kuisong, ZHANG Shengli, LIANG Xiaoxin, YAN Yuepeng. Discussion on Improving the Third Order Intersection Point of Radio Frequency Low Noise Amplifier[J]. Journal of Electronics & Information Technology, 2023, 45(1): 134-149. doi: 10.11999/JEIT211164

射频低噪声放大器提高三阶交截点方法探讨

doi: 10.11999/JEIT211164
基金项目: 国家重点研发计划(E0G928C001)
详细信息
    作者简介:

    赵巾翔:男,博士生,研究方向为射频微波集成电路设计及其模块

    汪峰:男,博士,研究方向为集成电路

    于汉超:男,博士,研究方向为集成电路

    王魁松:男,硕士,研究方向为射频微波集成电路设计及其模块

    张胜利:男,硕士生,研究方向为射频微波集成电路设计及其模块

    梁晓新:女,博士,研究方向为射频微波集成电路设计及其模块

    阎跃鹏:男,博士,研究方向为射频微波集成电路设计及其模块

    通讯作者:

    梁晓新 liangxiaoxin@ime.ac.cn

  • 中图分类号: TN43

Discussion on Improving the Third Order Intersection Point of Radio Frequency Low Noise Amplifier

Funds: The National Key R&D Program of China (E0G928C001)
  • 摘要: 随着现代通信技术的进步,特别是4G,5G等无线移动通信的高速发展,多正交振幅调制(QAM)等高频谱利用率的调制方式得到广泛应用,对无线通信系统提出了更高、更严格的线性要求。射频低噪声放大器(RF LNA)作为射频前端(RF FEM)的第1个有源器件,其非线性特征直接影响系统的信号质量和动态范围。以3阶交调为例,低噪声放大器需要足够的输入3阶交截点,以确保即使在强干扰信号下也能提供预期的性能。基于3阶非线性模型,该文简要分析了3阶交调的理论模型,梳理了提高3阶交截点的方法,归纳研究了近年来相关的研究成果与进展,并展望了未来的发展趋势。
  • 图  1  交调信号频谱

    图  2  基于弱非线性模型的3阶截断点

    图  3  最佳栅极偏置技术

    图  4  导数叠加技术

    图  5  广义DS结构[50]

    图  6  改进DS方法

    图  7  WRDS技术g3抵消窗口[65]

    图  8  预失真原理框图

    图  9  FET预失真电路

    图  10  有源后失真线性技术[83]

    图  11  前馈技术系统框图

    图  12  反馈技术系统框图

    表  1  提高IIP3方法对应发挥作用的非线性项

    方法最佳栅极偏置技术传统导数叠加技术改进导数叠加技术互补|差分导数叠加预失真电路后失真电路前馈技术反馈技术
    g2
    g3
    g2混叠
    高阶非线性(>3)
    下载: 导出CSV

    表  2  不同线性化方法对比

    技术方法文献来源工艺节点频率(GHz)IIP3
    △IIP3(dBm)
    NF
    △NF(dB)
    Gain
    △Gain(dB)
    Power
    △Power(mW)
    最佳栅极偏置技术ISCAS 2004 [43]0.25 μm CMOS0.88010.5|NA1.8|NA14.6|NA5.4|NA
    传统导数叠加技术ISSCC 2003 [51]0.25 μm CMOS2.00016.0|+132.8|–0.114|–0.89.4|–1.4
    改进导数叠加技术TMTT 2005 [60]0.25 μm CMOS0.90022.0|+20.01.65|–0.2515.5|–0.59.3|–0.3
    互补|差分导数叠加ISSCC 2009 [66]0.18 μm CMOS0.100~1.20010.6~14.32.9–3.517.521.3
    预失真电路TCSII 2006 [77]0.13 μm CMOS5.00019.7|+11.31.59|–0.4510.6|–115.4|–0.1
    后失真电路JSSC 2006 [83]0.25 μm CMOS0.869~0.8948.0|+5.751.2|–0.1516.2|–1.331.2|
    前馈技术ISSCC 2001 [89]0.35 μm CMOS0.9005.0|+13.02.6|–0.218|–2.522.5|–11.25
    负反馈技术ASSCC 2006 [101]0.09μm CMOS0.500~6.500–8.0|+6a2.5|+0.5a23|–2a21|+21a
    注:表中符号+表示性能优化,–表示恶化。a:所列对比指标为该文献与其前期已发表工作[107]的指标对比。
    下载: 导出CSV

    表  3  不同线性化方法总结

    技术方法PVT敏感宽带适用工程应用情况与指导意义
    最佳栅极偏置技术受频率、环境等因素限制,较少单独使用,一般与其他方法技术相结合。
    传统导数叠加技术较强适中存在输入信号功率范围窄、影响输入等问题,其改进型应用更为广泛。
    改进导数叠加技术适中较好改善了DS 2阶互调、输入功率范围等限制短板,进一步拓展了DS技术的适用范围。
    互补|差分导数叠加适中较好从结构上可以抑制2阶非线性的问题,且更适用于宽带应用,但易受电路失配等影响。
    预失真电路较弱预失真电路原理简单,其实现结构往往也不复杂,具有较好的宽带、工艺拓展性。使用中需要综合考虑噪声、功耗等指标的限制。
    后失真电路较弱适合宽带高线性应用,使用中需要用中通常需要综合考虑面积、功耗等限制。
    前馈技术较强可实现高阶非线性抵消,同时适合宽带应用。但难以满足面积小、低功耗的设计需要。
    负反馈技术较弱适用于宽带应用,受环境因素变化影响小,使用灵活,易于和其他电路结构相结合。需格外注意对噪声的影响。
    下载: 导出CSV
  • [1] LE L D and NGUYEN H H. Iterative self-interference mitigation in full-duplex wireless communications[J]. Wireless Personal Communications, 2019, 109(4): 2663–2682. doi: 10.1007/s11277-019-06702-6
    [2] ZOU Y, RAEESi O, ANTIllA L, et al. Impact of power amplifier nonlinearities in multi-user massive MIMO downlinc[C]. IEEE Globecom Wokshops, San Diego, USA, 2015, 1–7. doi: 10.1109/GLOCOMW.2015.7414011.
    [3] TAPIO V, SONKKI M, and JUNTTI M. Self-interference cancelation in the presence of non-linear power amplifier and receiver IQ imbalance[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020(1): 127. doi: 10.1186/s13638-020-01743-z
    [4] HOSSAIN N, SHIMAMURA T, and RYU H G. Nonlinear characteristics of DFT-spread WR-OFDM system for spectrum-efficient communications[J]. IEIE Transactions on Smart Processing and Computing, 2019, 8(6): 490–498. doi: 10.5573/IEIESPC.2019.8.6.490
    [5] Nguyen M T, Nefedov V I, Kozlovsky I V, et al. Analysis of the Raman spectrum of high-power amplifiers of wireless communication systems[J].[J]. Russian Technological Journal, , 2020, 7(6): 96–105.
    [6] TRULLS X, MATEO D, BOFILL A. A small-area inductorless configurable wideband LNA with high dynamic range[J]. Microelectronics Journal, 2012, 43(3): 198–204.
    [7] CHEN Mingzheng, TANG Wankai, DAI Junyan, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. National Science Review, 2022, 9(1): nwab134. doi: 10.1093/nsr/nwab134
    [8] REKHA T K. Design and development of compact microwave low pass filters with higher order harmonics suppression for wireless communication system[D]. [Ph. D. dissertation], Cochin University of Science and Technology, 2019.
    [9] YADAV N, KHAN M J, SINGH J, et al. A 0.533 dB noise figure and 7 mW narrowband low noise amplifier for GPS application[C]. NATH V. Proceedings of the International Conference on Microelectronics, Computing & Communication Systems. Singapore: Springer, 2018: 305–315.
    [10] RAZAVI B. RF Microelectronics[M]. 2nd ed. Upper Saddle River: Prentice Hall, 2012.
    [11] CHEN C N, CHEN Ying, KUO Taiyu, et al. A 35–39 GHz CMOS linearized receiver with 2 dBm IIP3 and 16.8 dBm OIP3 for the 5G systems[C]. Proceedings of the 14th European Microwave Integrated Circuits Conference, Paris, France, 2019: 92–95.
    [12] CHEN Y C. RF front-end nonlinearity and wireless communication system performance[D]. [Ph. D. dissertation], Northwestern University, 2000.
    [13] 王紫宽. 基于Volterra级数的高线性度LNA分析与设计[D]. [硕士论文], 上海交通大学, 2017.

    WANG Zikuan. Analysis and design of high linearity LNA based on Volterra series[D]. [Master dissertation], Shanghai Jiao Tong University, 2017.
    [14] LEE C, YOO J, and PARK C. A linearization method with optimizing impedance of envelope signal to suppress IMD3 of RF CMOS power amplifier[J]. Microwave and Optical Technology Letters, 2021, 63(2): 450–454. doi: 10.1002/mop.32629
    [15] TERROVITIS M T and MEYER R G. Intermodulation distortion in current-commutating CMOS mixers[J]. IEEE Journal of Solid-State Circuits, 2000, 35(10): 1461–1473. doi: 10.1109/4.871323
    [16] YU Wei, SEN S, and LEUNG B H. Distortion analysis of MOS track-and-hold sampling mixers using time-varying Volterra series[J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 1999, 46(2): 101–113. doi: 10.1109/82.752910
    [17] 南敬昌, 刘元安, 李新春, 等. 记忆效应非线性功放扩展Volterra模型分析与构建[J]. 电子与信息学报, 2008, 30(8): 2021–2024. doi: 10.3724/SP.J.1146.2007.00121

    NAN Jingchang, LIU Yuanan, LI Xinchun, et al. Analysis and modeling on expanding Volterra-series behavior model for nonlinear power amplifier with memory effects[J]. Journal of Electronics &Information Technology, 2008, 30(8): 2021–2024. doi: 10.3724/SP.J.1146.2007.00121
    [18] YU Haoran, EL-SANKARY K, and EL-MASRY E I. Distortion analysis using Volterra series and linearization technique of nano-scale bulk-driven CMOS RF amplifier[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2015, 62(1): 19–28. doi: 10.1109/TCSI.2014.2341116
    [19] 南敬昌, 赵景梅, 袁杰. 基于RBF神经网络的射频功放行为模型研究[J]. 计算机工程与应用, 2011, 47(8): 125–127,134. doi: 10.3778/j.issn.1002-8331.2011.08.037

    NAN Jingchang, ZHAO Jingmei, and YUAN Jie. Research on behavioral models for RF power amplifier based on RBF neural network[J]. Computer Engineering and Applications, 2011, 47(8): 125–127,134. doi: 10.3778/j.issn.1002-8331.2011.08.037
    [20] 任建伟, 南敬昌, 丛密芳. 基于神经网络的射频功放行为模型研究[J]. 计算机应用研究, 2011, 28(3): 845–847. doi: 10.3969/j.issn.1001-3695.2011.03.012

    REN Jianwei, NAN Jingchang, and CONG Mifang. Research on behavioral models for RF power amplifier based on neural network[J]. Application Research of Computers, 2011, 28(3): 845–847. doi: 10.3969/j.issn.1001-3695.2011.03.012
    [21] 江明玉, 刘太君, 叶焱, 等. 基于广义改进型RBF网络的射频功放非线性建模[J]. 移动通信, 2018, 42(3): 64–69. doi: 10.3969/j.issn.1006-1010.2018.03.012

    JIANG Mingyu, LIU Taijun, YE Yan, et al. Nonlinear modeling of RF power amplifier based on generalized improved RBF network[J]. Mobile Communications, 2018, 42(3): 64–69. doi: 10.3969/j.issn.1006-1010.2018.03.012
    [22] SCHUARTZ L, FREIRE L B C, HARA A T, et al. Modified indirect learning applied to neural network-based pre-distortion of a concurrent dual-band CMOS power amplifier[J]. Analog Integrated Circuits and Signal Processing, 2021, 106(1): 277–292. doi: 10.1007/s10470-020-01741-7
    [23] 陈林. 基于人工神经网络的射频电路建模研究[D]. [硕士论文], 电子科技大学, 2021.

    CHEN Lin. Research on RF circuit modeling based on artifical neural network[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [24] DONG L I, GUO Y S. Behavioral Modeling of Transient and Steadystate of RF Power Amplifier Based on Fuzzy Logic Systems[J]. Chinese Journal of Electron Devices, 2009, 32(2): 463–466.
    [25] 李栋, 郭裕顺. 基于模糊逻辑的射频功放建模[J]. 电子器件, 2009, 32(2): 463–466. doi: 10.3969/j.issn.1005-9490.2009.02.058

    LI Dong and GUO Yushun. Behavioral modeling of transient and steadystate of RF power amplifier based on fuzzy logic systems[J]. Chinese Journal of Electron Devices, 2009, 32(2): 463–466. doi: 10.3969/j.issn.1005-9490.2009.02.058
    [26] MURPHY D, HAFEZ A, MIRZAEI A, et al. A blocker-tolerant wideband noise-cancelling receiver with a 2dB noise figure[C]. IEEE Internatinal Solid-State Circuits Coference, San Francisco, USA, 2012, 74–76. doi: 10.1109/ISSCC.2012.6176935.
    [27] HUNZIKER S and BAECHTOLD W. Simple model for fundamental intermodulation analysis of RF amplifiers and links[J]. Electronics Letters, 1996, 32(19): 1826–1827. doi: 10.1049/el:19961218
    [28] 徐元中, 刘凌云. 射频MOS管的非线性特性分析与线性度提高技术[J]. 电子技术应用, 2015, 41(4): 56–59. doi: 10.16157/j.issn.0258-7998.2015.04.012

    XU Yuanzhong and LIU Lingyun. Nonlinear analysis and linearity enhancement techniques of RF MOS[J]. Application of Electronic Technique, 2015, 41(4): 56–59. doi: 10.16157/j.issn.0258-7998.2015.04.012
    [29] 於建生, 桑磊, 孙世滔, 等. 宽带射频功放晶体管非线性输出电容研究[J]. 电子科技, 2015, 28(4): 102–105. doi: 10.16180/j.cnki.issn1007-7820.2015.04.028

    YU Jiansheng, SANG Lei, SUN Shitao, et al. Study of nonlinear output capacitance of the wide-band power amplifier[J]. Electronic Science and Technology, 2015, 28(4): 102–105. doi: 10.16180/j.cnki.issn1007-7820.2015.04.028
    [30] SALIH A A, ZEEBAREE S R M, ABDULRAHEEM A S, et al. Evolution of mobile wireless communication to 5G revolution[J]. Technology Reports of Kansai University, 2020, 62(5): 2139–2151.
    [31] WANG Fei, WANG A, and WANG Hua. A 22–37 GHz broadband compact linear mm-wave power amplifier supporting 64-/256-/512-QAM modulations for 5G communications[C]. Proceedings of 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, USA, 2020: 1105–1108.
    [32] NGUYEN H N, LE V H, GWAK K U, et al. Low power, high linearity wideband receiver front-end for LTE application[C]. Proceedings of the 13th International Conference on Advanced Communication Technology, Gangwon, Korea, 2011: 640–643.
    [33] ZHANG Changchun, WU Yingjian, ZHANG Peng, et al. A CMOS dual-mode high-dynamic-range wideband receiver RF front-end[J]. Journal of Semiconductor Technology and Science, 2018, 18(5): 616–625. doi: 10.5573/JSTS.2018.18.5.616
    [34] TAO Jian, FAN Xiangning, and KUAN Bao. A single-ended wideband reconfigurable receiver front-end for multi-mode multi-standard applications in 0.18µm CMOS[J]. High Technology Letters, 2019, 25(1): 1–7.
    [35] KIM B K, IM D, CHOI J, et al. A Highly Linear 1 GHz 1.3 dB NF CMOS Low-Noise Amplifier With Complementary Transconductance Linearization[J]. IEEE Joural of Solid-State Circuits, 2014, 49(6): 1286–1302. doi: 10.1109/JSSC.2014.2319262.
    [36] MUJEEB A, YUWONO S , LEE J S , et al. Highly linear CMOS low noise amplifier with IIP3 boosting technique[C]// SoC Design Conference, 2008. ISOCC '08. International. IEEE, 2009.
    [37] BASHIR M A, YU Yiming, WU Yunqiu, et al. A high linearity low noise amplifier for 5G front-end modules[C]. Proceedings of 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 2019: 1–3.
    [38] NOH S H and RYU J Y. Study for linearity improvement of GHz-band low noise amplifier[J]. Journal of KIIT, 2019, 17(9): 41–47. doi: 10.14801/jkiit.2019.17.9.41
    [39] SALIM Z S M, MUHAMAD M, HUSSIN H, et al. CMOS LNA linearization employing multiple gated transistors[C]. Proceedings of the 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Bali, Indonesia, 2019: 137–140.
    [40] CHEN W H, LIU Gang, ZDRAVKO B, et al. A highly linear broadband CMOS LNA employing noise and distortion cancellation[J]. IEEE Journal of Solid-State Circuits, 2008, 43(5): 1164–1176. doi: 10.1109/JSSC.2008.920335
    [41] TANAKA S. Some non-linear operations in linear power amplifier for mobile applications[C]. Proceedings of 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, Korea, 2017: 107–109.
    [42] TOOLE B, PLETT C, and CLOUTIER M. RF circuit implications of moderate inversion enhanced linear region in MOSFETs[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2004, 51(2): 319–328. doi: 10.1109/TCSI.2003.822400
    [43] APARIN V, BROWN G, and LARSON L E. Linearization of CMOS LNA’s via optimum gate biasing[C]. Proceedings of 2004 IEEE International Symposium on Circuits and Systems, Vancouver, Canada, 2004: IV-748.
    [44] SILVA O, ANGELOV I, and ZIRATH H. Octave band linear MMIC amplifier with +40-dBm OIP3 for high-reliability space applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7): 2059–2067. doi: 10.1109/TMTT.2016.2574856
    [45] KOBAYASHI K W. Bias optimized IP2 & IP3 linearity and NF of a decade-bandwidth GaN MMIC feedback amplifier[C]. Proceedings of 2012 IEEE Radio Frequency Integrated Circuits Symposium, Montreal, Canada, 2012: 479–482.
    [46] EL-KHATIB Z, MACEACHERN L, and MAHMOUD S A. CMOS interleaved distributed 2×3 matrix amplifier employing active post distortion and optimum gate bias linearization technique[C]. Proceedings of the CCECE 2010, Calgary, Canada, 2010: 1–4.
    [47] RYU K K, KIM Y H, and KIM S C. Low noise and high linearity GaAs LNA MMIC with novel active bias circuit for LTE applications[J]. Journal of Information and Communication Convergence Engineering, 2017, 15(2): 112–116. doi: 10.6109/jicce.2017.15.2.112
    [48] REN Jiangchuan, DAI Ruofan, HE Jun, et al. A high power CMOS cascode power amplifier with adaptive dynamic bias control for linearity enhancement[J]. Microwave and Optical Technology Letters, 2020, 62(7): 2451–2457. doi: 10.1002/mop.32343
    [49] WEBSTER D R, HAIGH D G, SCOTT J B, et al. Derivative superposition-a linearisation technique for ultra broadband systems[C]. Proceedings of the IEE Colloquium Wideband Circuits, Modelling and Techniques, London, UK, 1996–1009.
    [50] EL-KHATIB Z, MACEACHERN L, and MAHMOUD S A. CMOS distributed paraphase amplifier employing derivative superposition linearization for wireless communications[C]. Proceedings of the 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun, Mexico, 2009: 1006–1009.
    [51] YOUN Y S, CHANG J H, KOH K J, et al. A 2GHz 16dBm IIP3 low noise amplifier in 0.25μm CMOS technology[C]. Proceedings of 2003 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2003: 452–507.
    [52] KIM T W, KIM B, and LEE K. Amplifier circuit having improved linearity and frequency band using a MGTR[P]. EP, 1672782-A1, 2004.
    [53] GUO Benqing and CHEN Jun. A wideband common-gate CMOS LNA employing complementary MGTR technique[J]. Microwave and Optical Technology Letters, 2017, 59(7): 1668–1671. doi: 10.1002/mop.30601
    [54] JUNG D, ZHAO Huan, and WANG Hua. A CMOS highly linear Doherty power amplifier with multigated transistors[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(5): 1883–1891. doi: 10.1109/TMTT.2019.2899596
    [55] GUO Benqing, GONG Jing, WANG Yao. A wideband differential linear low-noise transconductance amplifier with active-combiner feedback in complementary mgtr configurations[J]. Circuits and Systems I: Regular Papers, 2020, 99: 1–44.
    [56] DEHQAN A R, KENARROODI M, KARGARAN E, et al. Design of low-voltage low-power Dual-Band LNA with using DS method to improve linearity[C]. Proceedings of the 20th Iranian Conference on Electrical Engineering, Tehran, Iran, 2012: 88–91.
    [57] ZHANG Zhichao, KHAN M R, CHEN Li, et al. A broadband high linear LNA for GSM/LTE wireless communications[C]. Proceedings of the 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, Canada, 2012: 1–4.
    [58] LI Zhenrong, WANG Simin, LI Zhen, et al. A 0.5 to 6 GHz wideband cascode LNA with enhanced linearity by employing resistive shunt-shuntfeedback and derivative superposition[J]. Microwave and Optical Technology Letters, 2020, 62(10): 3157–3162. doi: 10.1002/mop.32435
    [59] HARI K K, SAT P, KASI R B, et al. Highly linear inductorless asymmetric capacitive cross-coupled wideband balun-LNAs[J]. Computers & Electrical Engineering, 2020, 83: 106614. doi: 10.1016/j.compeleceng.2020.106614
    [60] APARIN V and LARSON L E. Modified derivative superposition method for linearizing FET low-noise amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(2): 571–581. doi: 10.1109/TMTT.2004.840635
    [61] GANESAN S, SANCHEZ-SINENCIO E, and SILVA-MARTINEZ J. A highly linear low-noise amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 4079–4085. doi: 10.1109/TMTT.2006.885889
    [62] RUNGTA A and KANDPAL K. IIP3 improvement in subthreshold LNAs using modified derivative superposition technique for IoT applications[C]. Proceedings of the 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID), Delhi, India, 2019: 130–134.
    [63] RAFATI M, QASEMI S R, and AMIRI P. A 0.65 V, linearized cascade UWB LNA by application of modified derivative superposition technique in 130 nm CMOS technology[J]. Analog Integrated Circuits and Signal Processing, 2019, 99(3): 693–706. doi: 10.1007/s10470-019-01423-z
    [64] SHIN H, KIM J, and KIM N. Source degenerated derivative superposition method for linearizing RF FET differential amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(3): 1026–1035. doi: 10.1109/TMTT.2015.2391101
    [65] GAO Wei, CHEN Zhiming, LIU Zicheng, et al. A highly linear low noise amplifier with wide range derivative superposition method[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(12): 817–819. doi: 10.1109/LMWC.2015.2496793
    [66] IM D, NAM I, KIM H T, et al. A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner[J]. IEEE Journal of Solid-State Circuits, 2009, 44(3): 686–698. doi: 10.1109/JSSC.2008.2010804
    [67] YARAHMADI A and JANNESARI A. Design of a highly linear gain stage with complementary derivative superposition technique[J]. Wireless Personal Communications, 2019, 107(4): 1709–1716. doi: 10.1007/s11277-019-06352-8
    [68] YAGHOUTI B D and YAVANDHASANI J. A high linearity low power low-noise amplifier designed for ultra-wide-band receivers[J]. Analog Integrated Circuits and Signal Processing, 2021, 107(1): 109–120. doi: 10.1007/s10470-020-01783-x
    [69] GLADSON S C, PRAVEEN R, and BHASKAR M. A 0.1–2.75 GHz high-linear low-noise transconductance amplifier for high-performance multi-standard wireless applications[J]. Microsystem Technologies, 2020, 26(7): 2279–2295. doi: 10.1007/s00542-019-04643-5
    [70] TARIGHAT A P and YARGHOLI M. Low power active shunt feedback CMOS low noise amplifier for wideband wireless systems[J]. Integration, 2019, 69: 189–197. doi: 10.1016/j.vlsi.2019.04.001
    [71] GUO Benqing, CHEN Jun, CHEN Hongpeng, et al. An inductorless noise-cancelling CMOS LNA using wideband linearization technique[C]. Proceedings of the 12th International Conference on ASIC (ASICON), Guiyang, China, 2017: 690–693.
    [72] GUO Benqing, CHEN Jun, LI Lei, et al. A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations[J]. IEEE Journal of Solid-State Circuits, 2017, 52(5): 1331–1344. doi: 10.1109/JSSC.2017.2657598
    [73] KIM T W and KIM B. A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications[J]. IEEE Journal of Solid-State Circuits, 2006, 41(4): 945–953. doi: 10.1109/JSSC.2006.870744
    [74] KIM M G, KIM C H, YU H K, et al. An FET-level linearization method using a predistortion branch FET[J]. IEEE Microwave and Guided Wave Letters, 1999, 9(6): 233–235. doi: 10.1109/75.769531
    [75] MEMIOGLU O and GUNDEL A. A high linearity broadband gain Block/LNA MMIC with diode predistortion in GaAs pHEMT technology[C]. Proceedings of the 18th Mediterranean Microwave Symposium (MMS), Istanbul, Turkey, 2018: 120–123.
    [76] JAFARNEJAD R, JANNESARI A, and SOBHI J. A sub-2-dB noise figure linear wideband low noise amplifier in 0.18 µm CMOS[J]. Microelectronics Journal, 2017, 67: 135–142. doi: 10.1016/j.mejo.2017.07.012
    [77] VITZILAIOS G, PAPANANOS Y, THEODORATOS G, et al. Magnetic-feedback-based predistortion method for low-noise amplifier linearization[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2006, 53(12): 1441–1445. doi: 10.1109/TCSII.2006.884115
    [78] KIM T S, KIM S K, PARK J S, et al. Post-linearization of differential CMOS low noise amplifier using cross-coupled FETs[J]. Journal of Semiconductor Technology and Science, 2008, 8(4): 283–288. doi: 10.5573/JSTS.2008.8.4.283
    [79] VEISI S and YARGHOLI M. Design of a high linear and ultra-wideband LNA using post distortion star feedback method[J]. Microelectronics Journal, 2021, 107: 104949. doi: 10.1016/j.mejo.2020.104949
    [80] YOON Y, AN K H, KANG D, et al. A highly linear 28GHz 16-element phased-array receiver with wide gain control for 5G NR application[C]. Proceedings of 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, USA, 2019: 287–290.
    [81] MEHRJOO M S, WANG Chuan, XIAO Yanming, et al. Post distortion cancellation with phase shifter diode for low noise amplifier[P]. US, 20180175806 A1, 2018.
    [82] GUO Benqing and LI Xiaolei. A 1.6–9.7 GHz CMOS LNA linearized by post distortion technique[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(11): 608–610. doi: 10.1109/LMWC.2013.2281426
    [83] KIM N, APARIN V, BARNETT K, et al. A cellular-band CDMA 0.25-μm CMOS LNA linearized using active post-distortion[J]. IEEE Journal of Solid-State Circuits, 2006, 41(7): 1530–1534. doi: 10.1109/JSSC.2006.873909
    [84] CAO Cheng, LI Xiuping, LI Yubing, et al. A triple-cascode X-Band LNA design with modified post-distortion network[J]. Electronics, 2021, 10(5): 546. doi: 10.3390/electronics10050546
    [85] KIM T S and KIM B S. Post-linearization of cascode CMOS low noise amplifier using folded PMOS IMD sinker[J]. IEEE Microwave and Wireless Components Letters, 2006, 16(4): 182–184. doi: 10.1109/LMWC.2006.872131
    [86] FAHMY G A and KANAYA H. +1dBm IIP3, low noise amplifier for ultra-wide band wireless applications[C]. Proceedings of the 28th International Conference on Microelectronics (ICM), Giza, Egypt, 2016: 337–340.
    [87] RUMMERY S and BRANNER G R. Power amplifier design using feedforward linearization[C]. Proceedings of the 40th Midwest Symposium on Circuits and Systems. Dedicated to the Memory of Professor Mac Van Valkenburg, Sacramento, USA, 1997: 545–548.
    [88] LIN Min, WANG Haiyong, LI Yongming, et al. A novel IP3 boosting technique using feedforward distortion cancellation method for 5 GHz CMOS LNA[J]. Analog Integrated Circuits and Signal Processing, 2006, 46(3): 293–296. doi: 10.1007/s10470-006-2134-3
    [89] DING Yongwang and HARJANI R. A +18 dBm IIP3 LNA in 0.35 μm CMOS[C]. Proceedings of 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, USA, 2001: 163–163.
    [90] BASTOS I, OLIVEIRA L, OLIVEIRA J P, et al. Double feedforward 0.6 V LNA with high gain and low noise figure[C]. Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems-MIXDES 2013, Gdynia, Poland, 2013: 235–238.
    [91] JANG J, KIM H, LEE G, et al. Two-stage compact wideband flat gain low-noise amplifier using high-frequency feedforward active inductor[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12): 4803–4811. doi: 10.1109/TMTT.2019.2947483
    [92] LIU Zhe, BOON C C, YU Xiaopeng, et al. A 0.061-mm2 1–11-GHz noise-canceling low-noise amplifier employing active feedforward with simultaneous current and noise reduction[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(6): 3093–3106. doi: 10.1109/TMTT.2021.3061290
    [93] ROOBERT A A, RANI D G N, and RAJARAM S. Design and optimisation of feedforward noise cancelling complementary metal oxide semiconductor LNA for 2.4 GHz WLAN applications[J]. IET Circuits, Devices & Systems, 2019, 13(6): 908–919. doi: 10.1049/iet-cds.2018.5291
    [94] BOUSSEAUD P, KHAN M A, and NEGRA R. Inductorless wideband LNA with improved input matching using feedforward technique[C]. Proceedings of the 46th European Microwave Conference (EuMC), London, UK, 2016: 1027–1030.
    [95] OZAN S, NAIR M, CAPPELLO T, et al. Low-noise amplifier with wideband feedforward linearisation for mid-band 5G receivers[C]. 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Ha Long, Vietnam, 2020: 125–128.
    [96] PERUMANA B G, ZHAN J H C, TAYLOR S S, et al. A 5 GHz, 21 dBm output-IP3 resistive feedback LNA in 90-nm CMOS[C]. Proceedings of the 33rd European Solid-State Circuits Conference, Munich, Germany, 2007: 372–375.
    [97] SHI Jiahui, YAN Xu, ZHANG Hao, et al. A 0.1–3.4 GHz LNA with multiple feedback and current-reuse technique based on 0.13-μm SOI CMOS[C]. Proceedings of 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 2019: 1–3.
    [98] WOO S, KIM W, LEE C H, et al. A wideband low-power CMOS LNA with positive-negative feedback for noise, gain, and linearity optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(10): 3169–3178. doi: 10.1109/TMTT.2012.2211379
    [99] PERUMANA B G, ZHAN J H C, TAYLOR S S, et al. Resistive-feedback CMOS low-noise amplifiers for multiband applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(5): 1218–1225. doi: 10.1109/TMTT.2008.920181
    [100] VAN HARTINGSVELDT K, VERHOEVEN C J M, and WILLMS J. Influence of frequency compensation on the linearity of negative feedback amplifiers[C]. Proceedings of 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 2005: 1610–1613.
    [101] PERUMANA B G, ZHAN J H C, TAYLOR S S, et al. A 0.5–6 GHz improved linearity, resistive feedback 90-nm CMOS LNA[C]. Proceedings of 2006 IEEE Asian Solid-state Circuits Conference, Hangzhou, China, 2006: 263–266.
    [102] COOK M and ROGERS J W M. A study of nonlinearity including feedback memory with application to RF amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(3): 198–200. doi: 10.1109/LMWC.2016.2526020
    [103] KHISTI M and TURKANE S. CMOS LNA using 130nm process with improved Noise Figure and linearity using Harmonic rejection technique[C]. Proceedings of 2015 International Conference on Energy Systems and Applications, Pune, India, 2015: 411–414.
    [104] YOON J and PARK C. A CMOS LNA using a harmonic rejection technique to enhance its linearity[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(9): 605–607. doi: 10.1109/LMWC.2014.2326518
    [105] KOBAYASHI K W. High linearity dynamic feedback Darlington amplifier[C]. Proceedings of 2007 IEEE Compound Semiconductor Integrated Circuits Symposium, Portland, USA, 2007: 1–4.
    [106] LOU Shuzuo and LUONG H C. A linearization technique for RF receiver front-end using second-order-intermodulation injection[J]. IEEE Journal of Solid-State Circuits, 2008, 43(11): 2404–2412. doi: 10.1109/JSSC.2008.2004531
    [107] ZHAN J H C and TAYLOR S S. A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications[C]. Proceedings of 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers, San Francisco, USA, 2006: 721–730.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  884
  • HTML全文浏览量:  810
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2022-05-15
  • 网络出版日期:  2022-05-20
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回