高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向电网业务质量保障的5G高可靠低时延通信资源调度方法

丰雷 谢坤宜 朱亮 邱雪松 郭少勇

丰雷, 谢坤宜, 朱亮, 邱雪松, 郭少勇. 面向电网业务质量保障的5G高可靠低时延通信资源调度方法[J]. 电子与信息学报, 2021, 43(12): 3418-3426. doi: 10.11999/JEIT210509
引用本文: 丰雷, 谢坤宜, 朱亮, 邱雪松, 郭少勇. 面向电网业务质量保障的5G高可靠低时延通信资源调度方法[J]. 电子与信息学报, 2021, 43(12): 3418-3426. doi: 10.11999/JEIT210509
Lei FENG, Kunyi XIE, Liang ZHU, Xuesong QIU, Shaoyong GUO. 5G Ultra-Reliable and Low Latency Communication Resource Scheduling for Power Business Quality Assurance[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3418-3426. doi: 10.11999/JEIT210509
Citation: Lei FENG, Kunyi XIE, Liang ZHU, Xuesong QIU, Shaoyong GUO. 5G Ultra-Reliable and Low Latency Communication Resource Scheduling for Power Business Quality Assurance[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3418-3426. doi: 10.11999/JEIT210509

面向电网业务质量保障的5G高可靠低时延通信资源调度方法

doi: 10.11999/JEIT210509
基金项目: 国家重点研发计划(2020YFB0906003)
详细信息
    作者简介:

    丰雷:男,1987年生,副教授,主要研究方向为无线网络管理、物联网资源调度

    谢坤宜:女,1997年生,博士生,研究方向为无线网络管理、物联网资源调度

    朱亮:男,1996年生,硕士生,研究方向为无线网络管理、物联网资源调度

    邱雪松:男,1973年生,教授,主要研究方向为通信网络管理、通信软件

    郭少勇:男,1985年生,副教授,主要研究方向为能源互联网、区块链技术

    通讯作者:

    郭少勇 syguo@bupt.edu.cn

  • 中图分类号: TN929.5

5G Ultra-Reliable and Low Latency Communication Resource Scheduling for Power Business Quality Assurance

Funds: The National Key R&D Program of China (2020YFB0906003)
  • 摘要: 该文研究面向电网业务质量保障的5G 高可靠低时延通信(URLLC)的资源调度机制,以高效利用低频段蜂窝通信系统内有限的频谱和功率资源来兼顾电力终端传输速率和调度时延、调度公平性,保障不同电力业务的通信质量(QoS)。首先,基于URLLC的高可靠低时延传输特性,建立电力终端多小区下行传输模型。然后,提出面向系统下行吞吐量最大化的资源分配问题模型并对其进行分步求解,分别提出基于定价机制与非合作博弈的功率分配算法和基于调度时延要求的改进比例公平算法(DPF)动态调度信道资源。仿真结果表明,提出的资源调度方法能在保证一定传输可靠性和公平性的条件下降低电力终端调度时延,满足不同业务等级的QoS需求,与已知算法对比有一定的优越性。
  • 图  1  终端非合作功率分配博弈的迭代过程

    图  2  资源分配算法性能对比

    图  3  不同业务等级终端平均调度时延的对比

    图  4  不同可靠性要求下系统吞吐量的对比

  • [1] SUN Chengjian, SHE Changyang, and YANG Chenyang. Energy-efficient resource allocation for ultra-reliable and low-latency communications[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254943.
    [2] SUN Chengjian, SHE Changyang, YANG Chenyang, et al. Optimizing resource allocation in the short blocklength regime for ultra-reliable and low-latency communications[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 402–415. doi: 10.1109/TWC.2018.2880907
    [3] HU Yulin, OZMEN M, GURSOY M C, et al. Optimal power allocation for QoS-constrained downlink networks with finite blocklength codes[C]. 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377030.
    [4] SHEN Chao, CHANG T H, XU Hanqing, et al. Joint uplink and downlink transmission design for URLLC using finite blocklength codes[C]. The 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018: 1–5. doi: 10.1109/ISWCS.2018.8491069.
    [5] GE Xiaohu. Ultra-reliable low-latency communications in autonomous vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 5005–5016. doi: 10.1109/TVT.2019.2903793
    [6] LEINONEN J, HÄMÄLÄINEN J, and JUNTTI M. Performance analysis of downlink OFDMA resource allocation with limited feedback[J]. IEEE Transactions on Wireless Communications, 2009, 8(6): 2927–2937. doi: 10.1109/TWC.2009.071374
    [7] 潘甦, 曹跑跑, 刘胜美. 一种多无线电系统中基于公平性和精细化带宽分配的资源分配算法[J]. 电子与信息学报, 2015, 37(2): 399–404. doi: 10.11999/JEIT140339

    PAN Su, CAO Paopao, and LIU Shengmei. A resource allocation algorithm based on proportional fairness and refined bandwidth allocation for multi-radio systems[J]. Journal of Electronics &Information Technology, 2015, 37(2): 399–404. doi: 10.11999/JEIT140339
    [8] RHEE J H, HOLTZMAN J M, and KIM D K. Scheduling of real/non-real time services: Adaptive EXP/PF algorithm[C]. The 57th IEEE Semiannual Vehicular Technology Conference, Jeju, Korea (South), 2003: 462–466. doi: 10.1109/VETECS.2003.1207583.
    [9] 张天魁, 曾志民, 张颖莹. 基于博弈论的OFDMA系统多小区功率协调分配算法[J]. 通信学报, 2008, 29(1): 22–29. doi: 10.3321/j.issn:1000-436X.2008.01.004

    ZHANG Tiankui, ZENG Zhimin, and ZHANG Yingying. Multicell adaptive power allocation scheme based on game theory in OFDMA systems[J]. Journal on Communications, 2008, 29(1): 22–29. doi: 10.3321/j.issn:1000-436X.2008.01.004
    [10] 仲崇显, 李春国, 杨绿溪. 基于非合作博弈论的多小区OFDMA系统动态资源分配算法研究[J]. 电子与信息学报, 2009, 31(8): 1935–1940. doi: 10.1016/j.apm.2007.10.019

    ZHONG Chongxian, LI Chunguo, and YANG Lüxi. Dynamic resource allocation algorithm for multi-cell OFDMA systems based on noncooperative game theory[J]. Journal of Electronics &Information Technology, 2009, 31(8): 1935–1940. doi: 10.1016/j.apm.2007.10.019
    [11] 何学文. OFDM系统中资源分配技术研究[D]. [硕士论文], 上海交通大学, 2009.

    HE Xuewen. Research on Resource allocation technology of OFDM system[D]. [Master dissertation], Shanghai Jiao Tong University, 2009.
    [12] NASIR A A. Min-max decoding-error probability-based resource allocation for a URLLC System[J]. IEEE Communications Letters, 2020, 24(12): 2864–2867. doi: 10.1109/LCOMM.2020.3015688
    [13] 谢显中, 黎佳, 黄倩, 等. 机器类通信中基于NOMA短编码块传输的高可靠低迟延无线资源分配优化方案[J]. 电子与信息学报, 2019, 41(11): 2549–2556. doi: 10.11999/JEIT190128

    XIE Xianzhong, LI Jia, HUANG Qian, et al. Optimal scheme of resource allocation for ultra-reliable and low-latency in machine type communications based on non-orthogonal multiple access with short block transmission[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2549–2556. doi: 10.11999/JEIT190128
    [14] GHANEM W R, JAMALI V, SUN Yan, et al. Resource allocation for multi-user downlink MISO OFDMA-URLLC systems[J]. IEEE Transactions on Communications, 2020, 68(11): 7184–7200. doi: 10.1109/TCOMM.2020.3017757
    [15] FENG Lei, LI Wenjing, LIN Yingxin, et al. Joint computation offloading and URLLC resource allocation for collaborative MEC assisted cellular-V2X networks[J]. IEEE Access, 2020, 8: 24914–24926. doi: 10.1109/ACCESS.2020.2970750
    [16] KHAN J and JACOB L. Availability maximization framework for CoMP enabled URLLC with short packets[J]. IEEE Networking Letters, 2020, 2(1): 1–4. doi: 10.1109/LNET.2020.2974894
    [17] LIBRINO F and SANTI P. Resource allocation and sharing in URLLC for IoT applications using Shareability graphs[J]. IEEE Internet of Things Journal, 2020, 7(10): 10511–10526. doi: 10.1109/JIOT.2020.2999645
    [18] GHANEM W R, JAMALI V, ZHANG Qiuyu, et al. Joint uplink-downlink resource allocation for OFDMA-URLLC MEC systems[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–7. doi: 10.1109/GLOBECOM42002.2020.9348027.
    [19] FENG Lei, ZI Yueqi, LI Wenjing, et al. Dynamic resource allocation with RAN slicing and scheduling for uRLLC and eMBB hybrid services[J]. IEEE Access, 2020, 8: 34538–34551. doi: 10.1109/ACCESS.2020.2974812
    [20] 3GPP. TR 38.802 v14.2. 0-2017 Study on new radio access technology Physical layer aspects[S]. 2017.
    [21] FAXÉN L. A study on segmentation for ultra-reliable low-latency communications[D]. [Master dissertation], Linköping University, 2017.
    [22] ROCHIM A F, MUIS A, and SARI R F. A discrimination index based on Jain's fairness index to differentiate researchers with identical H-index Values[J]. Journal of Data and Information Science, 2020, 5(4): 5–18. doi: 10.2478/jdis-2020-0026
    [23] YU Baoquan, WU Dan, CAI Yueming, et al. Resource allocation for massive machine type communications in the finite blocklength regime[J]. China Communications, 2021, 18(3): 240–250. doi: 10.23919/JCC.2021.03.019
  • 加载中
图(4)
计量
  • 文章访问数:  746
  • HTML全文浏览量:  581
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-10-23
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回