高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于周期截断数据矩阵奇异值分解的干扰抑制技术

戚连刚 申振恒 王亚妮 国强 KaliuzhnyMykola

戚连刚, 申振恒, 王亚妮, 国强, KaliuzhnyMykola. 基于周期截断数据矩阵奇异值分解的干扰抑制技术[J]. 电子与信息学报, 2022, 44(6): 2143-2150. doi: 10.11999/JEIT210397
引用本文: 戚连刚, 申振恒, 王亚妮, 国强, KaliuzhnyMykola. 基于周期截断数据矩阵奇异值分解的干扰抑制技术[J]. 电子与信息学报, 2022, 44(6): 2143-2150. doi: 10.11999/JEIT210397
QI Liangang, SHEN Zhenheng, WANG Yani, GUO Qiang, Kaliuzhny Mykola. Interference Suppression Technology Based on Singular Value Decomposition of Periodic Truncated Data Matrix[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2143-2150. doi: 10.11999/JEIT210397
Citation: QI Liangang, SHEN Zhenheng, WANG Yani, GUO Qiang, Kaliuzhny Mykola. Interference Suppression Technology Based on Singular Value Decomposition of Periodic Truncated Data Matrix[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2143-2150. doi: 10.11999/JEIT210397

基于周期截断数据矩阵奇异值分解的干扰抑制技术

doi: 10.11999/JEIT210397
基金项目: 国家重点研发计划(2018YFE0206500),国家自然科学基金(62071140,62101155)
详细信息
    作者简介:

    戚连刚:男,1990年生,讲师,预聘副教授,研究方向为自适应干扰抑制、卫星导航信号处理

    申振恒:男,1997年生,硕士生,研究方向为自适应干扰抑制

    王亚妮:女,1991年生,博士生,研究方向为智能阵列信号处理、自适应干扰抑制

    国强:男,1972年生,教授,研究方向为电子对抗、智能信号处理与识别

    KaliuzhnyMykola:男,1948年生,教授,研究方向为电子对抗、电磁目标识别

    通讯作者:

    国强 guoqiang@hrbeu.edu.cn

  • 中图分类号: TN96; TN97

Interference Suppression Technology Based on Singular Value Decomposition of Periodic Truncated Data Matrix

Funds: The National Key Research and Development Program (2018YFE0206500), The National Natural Science Foundation of China (62071140,62101155)
  • 摘要: 针对现有适用于单天线接收机的干扰抑制技术难以为周期调频(PFM)干扰和卫星导航信号提供足够分离度,导致消除干扰成分时卫星导航信号损伤较大的问题,该文提出一种基于周期截断数据矩阵奇异值分解的干扰抑制方法。利用调频干扰信号的周期性把分散在较大带宽的能量集中到重排数据中几个甚至单个频点;进而采用奇异值分解(SVD)将干扰与期望信号映射进不同的投影子空间以消除干扰成分。仿真结果表明该方法可以降低在剔除干扰时卫星导航信号损失,提升卫星导航接收机对抗宽带周期调频干扰的能力。
  • 图  1  本文所提方法原理框图

    图  2  单分量干扰场景下各方法干扰抑制性能

    图  3  双分量干扰场景1下各方法干扰抑制性能

    图  4  双分量干扰场景2下各方法干扰抑制性能

    图  5  双分量场景2下干扰抑制效果随信噪比变化情况

    表  1  各干扰场景干扰参数

    干扰场景调频率(GHz/s)扫频周期(ms)带宽(MHz)起始频率,终止频率(MHz)
    单线性调频干扰场景100.220.1,2.1
    双线性调频干扰场景110;–20.2;0.42;0.80.1,2.1;2,1.2
    双线性调频干扰场景210;–20.2;0.322;0.640.1,2.1;2,1.36
    下载: 导出CSV

    表  2  单分量干扰场景与双分量干扰场景1性能变化对比

    MSTFTWPCTFRFT文献[11]方法(16个周期)本文方法(16个周期)
    INR (dB)30453045304530453045
    ΔNMSE↑0.3↑0.3↑0.4↑0.3↑0.2↑0.10000
    ΔSINR↓2.7↓5.7↓9.8↓7.2↓1.8↓5.1↓1.8↓2.900
    ΔAF↓2.2↓1.8↓3.9↓2.2↓10.3↓1.6↓1.2↓0.8↓0.7↓0.7
    下载: 导出CSV

    表  3  双分量干扰场景1与双分量干扰场景2性能变化对比

    MSTFTWPCTFRFT文献[11]方法(16个周期)本文方法(16个周期)
    INR(dB)30453045304530453045
    ΔNMSE000↑0.10↑0.1↑0.1↑0.100
    ΔSINR0↓1.2↓1.1↓1.50↓1.5↓1.5↓2.5↓0.4↓5.4
    ΔAF↓1.10↓1.00↓1.3↓0.9↓2.0↓0.9↓0.6↓12.1
    下载: 导出CSV

    表  4  计算复杂度对比

    方法计算复杂度单干扰场景双干扰场景1双干扰场景2
    本文方法$ 2{N_p}(4 + 6{\log _2}{N_p}){\text{ + }}{N_j}\left[ {\left\lceil {{N_I}/(MQ)} \right\rceil ({\text{3}}MQ + {M^3} + {\text{3}}{M^2}{\text{ - }}M + 2{Q^2} - Q + {\text{3}})} \right] $3.9×1087.6×1088.8×108
    MSTFT$2K{N_I}/({N_t} - v){N_t}{\log_2}{N_t} + {N_I}$9.2×1099.2×1099.2×109
    WPCT$8{N_I}{N_t}{\log_2}{N_t}({2^5} - 1) + {({N_I})^2} + {N_I}$9.0×10129.0×10129.0×1012
    FRFT${N_j}(r + 2{N_I}/{N_t})(6{N_t}{\log_2}{N_t} + 3{N_t}) + 2{N_I}$5.1×1095.1×1091.0×1010
    文献[9]$2{N_I}{N_t}{\log_2}({N_t}) + {N_I} + {N_t}({N_t} - 2)$6.1×1010
    文献[11]$2{N_p}(4 + 6 {\log_2}{N_p}) + {N_j}[8{N_L}(1 + 2 {\log_2}{N_L}) + 8\left\lceil { {N_I}/{N_B} } \right\rceil {N_B} {\log_2}{N_B}]$9.9×1079.9×1071.9×108
    下载: 导出CSV
  • [1] MORONG T, PURIČER P, and KOVÁŘ P. Study of the GNSS jamming in real environment[J]. International Journal of Electronics and Telecommunications, 2019, 65(1): 65–70. doi: 10.24425/ijet.2019.126284
    [2] MEDINA D, LASS C, MARCOS E P, et al. On GNSS jamming threat from the maritime navigation perspective[C]. 2019 22th International Conference on Information Fusion (FUSION), Ottawa, Canada, 2019: 1–7.
    [3] GAO G X, SGAMMINI M, LU Mingquan, et al. Protecting GNSS receivers from jamming and interference[J]. Proceedings of the IEEE, 2016, 104(6): 1327–1338. doi: 10.1109/JPROC.2016.2525938
    [4] MORALES-FERRE R, RICHTER P, FALLETTI E, et al. A survey on coping with intentional interference in satellite navigation for manned and unmanned aircraft[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 249–291. doi: 10.1109/COMST.2019.2949178
    [5] GUPTA I J, WEISS I M, and MORRISON A W. Desired features of adaptive antenna arrays for GNSS receivers[J]. Proceedings of the IEEE, 2016, 104(6): 1195–1206. doi: 10.1109/JPROC.2016.2524416
    [6] LI Xianghao, CHEN Feiqiang, LU Zukun, et al. Overview of anti-Jamming technology based on GNSS single-antenna receiver[C]. The 2020 3rd International Conference on Geoinformatics and Data Analysis, Marseille, France, 2020: 96–104. doi: 10.1145/3397056.3397077.
    [7] FALLETTI E, GAMBA M T, and PINI M. Design and analysis of activation strategies for adaptive notch filters to suppress GNSS jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3718–3734. doi: 10.1109/TAES.2020.2982301
    [8] REZAEI M J, ABEDI M, and MOSAVI M R. New GPS anti-jamming system based on multiple short-time Fourier transform[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 807–815. doi: 10.1049/iet-rsn.2015.0417
    [9] WANG Pai, CETIN E, DEMPSTER A G, et al. Improved characterization of GNSS jammers using short-term time-frequency Rényi entropy[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1918–1930. doi: 10.1109/taes.2018.2805195
    [10] KIM S Y, KANG C H, and PARK C G. Multiple frequency tracking and mitigation based on RSPWVD and adaptive multiple linear Kalman notch filter[J]. International Journal of Control, Automation and Systems, 2020, 18(5): 1139–1149. doi: 10.1007/s12555-019-0123-4
    [11] QI Liangang, WANG Yani, GUO Qiang, et al. Modulation period resampling technique against multiple PFM interferers for single antenna GNSS receivers[J]. IEEE Communications Letters, 2020, 24(10): 2309–2313. doi: 10.1109/lcomm.2020.3000478
    [12] 姚铮. 陆明泉. 新一代卫星导航系统信号设计原理与实现技术[M]. 北京: 电子工业出版社, 2016: 22–55.

    YAO Zheng and LU Mingquan. Signal Design Principle and Implementation Technology of New Generation Satellite Navigation System[M]. Beijing: Publishing House of Electronics Industry, 2016: 22–55.
    [13] 李继根, 张新发. 矩阵分析与计算[M]. 武汉: 武汉大学出版社, 2013: 190–192.

    LI Jigen and ZHANG Xinfa. Matrix Analysis and Computation[M]. Wuhan: Wuhan University Press, 2013: 190–192.
    [14] 李振东, 谭维凤, 康成斌, 等. 直接序列扩频系统抗干扰能力研究[J]. 电子与信息学报, 2021, 43(1): 116–123. doi: 10.11999/JEIT191007

    LI Zhendong, TAN Weifeng, KANG Chengbin, et al. Research on anti-interference ability of direct sequence spread spectrum system[J]. Journal of Electronics &Information Technology, 2021, 43(1): 116–123. doi: 10.11999/JEIT191007
    [15] KANJILAL P P and PALIT S. On multiple pattern extraction using singular value decomposition[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1536–1540. doi: 10.1109/78.388873
    [16] MOSAVI M R, PASHAIAN M, REZAEI M J, et al. Jamming mitigation in global positioning system receivers using wavelet packet coefficients thresholding[J]. IET Signal Processing, 2015, 9(5): 457–464. doi: 10.1049/iet-spr.2014.0280
    [17] HUANG Kewu, TAO Ran, WU Kui, et al. Study on interference suppression based on joint fractional Fourier domain and time domain[J]. Science China Technological Sciences, 2011, 54(10): 2674–2686. doi: 10.1007/s11431-011-4533-7
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  832
  • HTML全文浏览量:  591
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-10-20
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回