高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有线无线融合的卫星时间敏感网络流调度研究

徐川 刘俊斌 邢媛 石东 赵国锋

徐川, 刘俊斌, 邢媛, 石东, 赵国锋. 有线无线融合的卫星时间敏感网络流调度研究[J]. 电子与信息学报, 2022, 44(3): 1014-1023. doi: 10.11999/JEIT210063
引用本文: 徐川, 刘俊斌, 邢媛, 石东, 赵国锋. 有线无线融合的卫星时间敏感网络流调度研究[J]. 电子与信息学报, 2022, 44(3): 1014-1023. doi: 10.11999/JEIT210063
XU Chuan, LIU Junbin, XING Yuan, SHI Dong, ZHAO Guofeng. Research on Flow Scheduling of Wired and Wireless Converged Satellite Time Sensitive Network[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1014-1023. doi: 10.11999/JEIT210063
Citation: XU Chuan, LIU Junbin, XING Yuan, SHI Dong, ZHAO Guofeng. Research on Flow Scheduling of Wired and Wireless Converged Satellite Time Sensitive Network[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1014-1023. doi: 10.11999/JEIT210063

有线无线融合的卫星时间敏感网络流调度研究

doi: 10.11999/JEIT210063
基金项目: 国家自然科学基金(62171070),国家重点研发计划(2018YFB1800301,2018YFB1800304),重庆市技术创新与应用重大主题项目(cstc2019jscx-zdztzxX0013),重庆市研究生科研创新项目(CYB19176,BYJS201905)
详细信息
    作者简介:

    徐川:男,1980年生,教授,研究方向为时间敏感网络、天地一体化网络、工业互联网

    刘俊斌:男,1996年生,硕士生,研究方向为时间敏感网络

    邢媛:女,1992年生,博士生,研究方向为空间信息网络、时间敏感网络

    石东:男,1994年生,硕士生,研究方向为时间敏感网络

    赵国锋:男,1972年生,教授,研究方向为工业互联网、天地一体化网络、网络测量

    通讯作者:

    徐川 xuchuan@cqupt.edu.cn

  • 中图分类号: TN927.2; TP393

Research on Flow Scheduling of Wired and Wireless Converged Satellite Time Sensitive Network

Funds: The National Natural Science Foundation of China (62171070), The National Key Research and Development Project of China (2018YFB1800301, 2018YFB1800304), The Major Theme Project of Chongqing Technology Innovation and Application (cstc2019jscx-zdztzxX0013),The Chongqing Postgraduate Research and Innovation Project (CYB19176, BYJS201905)
  • 摘要: 随着空间通信任务日趋复杂化,尤其是对时间敏感的需求不断提升,一方面要求星内系统的高带宽、可靠性和实时性;另一方面星间无线链路也应具备低时延和高可靠性。但由于卫星内部有线链路与星间无线链路差异大,业务数据经过有线和无线链路联合传输时,容易引发节点拥塞,而无法保障时敏业务的时延有界需求。为了提升数据在空间网络传输的实时性,该文提出了一种有线无线融合的时间敏感网络(TSN)流调度方案,首先对有线和无线链路资源分配与终端时延关系进行分析建模,并通过TSN控制器收集终端时敏需求,构建以全网时敏业务端到端最小平均时延为优化目标,然后采用基于增强精英保留遗传算法进行方案的快速求解。通过Pycharm对比测试时隙分配算法的性能,同时设计实现基于EXata网络仿真平台的低轨卫星TSN系统,并搭建实验场景进行试验验证。测试结果表明,该文所提出的流联合调度方案能够为空间时敏任务提供有界、稳定的时延保障。
  • 图  1  有线无线融合的多卫星编队网络

    图  2  有线无线时隙位置不匹配

    图  3  系统模型图

    图  4  超帧结构

    图  5  有线无线融合时隙

    图  6  时隙分配方案性能对比

    图  7  有线无线融合的卫星时间敏感网络仿真场景

    图  8  有线无线融合流调度性能测试

    表  1  TSN-GA算法

     输入:网络设备数N,每个设备权值$ {\alpha _i} $,无线传输速率v,设备
     业务量大小$ B_i^{\text{s}} $,种群数量Np,最大迭代数maxCycle,决策变量
     维度Dim,变异概率$ {P_m} $,交叉概率$ {P_c} $
     输出:网络最低时延、时隙最佳位置
     (1)  while $ {\text{Cycle}} \le {\text{maxCycle}} $ do
     (2)    for m=1 to Np
     (3)      $ v_m^n $=Crossover($ \alpha _m^n $)
     (4) end for
     (5)    for m=1 to Np
     (6) $ \mu _m^n $=Mutation($ v_m^n $)
     (7)    end for
     (8)    for m=1 to 2Np
     (9)      $ \rho _m^n $=Select($ \alpha _m^n $, $ \mu _m^n $)
     (10)    end for
     (11)   $ {\text{Cycle}} $=$ {\text{Cycle}} $+1;
     (12) end while
     (13) for Cycle=1 to maxCycle
     (14)    $ {\text{min\_delay(Cycle) = F(Cycle)}} $;
     (15)    $ {\text{best\_position}} $(Cycle)= $ {\text{F(Cycle)}} $
     (16) end for
    下载: 导出CSV

    表  2  编队卫星的参数设置

    参数数值
    TSN控制卫星轨道参数[a,e,i,$\varOmega$,w,f]8×106 m, 0°, 30°, 15°, 15°, 10°
    空间圆半径(R/km)30
    编队卫星个数7
    成员卫星1初始相位角$ {\theta _1} $(°)0
    相位之差$ \Delta \theta $(°)72
    下载: 导出CSV

    表  3  实验参数设置

    业务类型源端目的端周期(ms)业务量(bit)

    快速位置报告信息
    终端11终端336500
    终端18终端336500
    终端14终端336500

    北斗短报文
    终端13终端37122000
    终端8终端15122000
    终端23终端29122000

    遥感勘测
    终端12终端15244000
    终端18终端17244000
    终端29终端12244000
    下载: 导出CSV
  • [1] XIE Renchao, TANG Qinqin, WANG Qiuning, et al. Satellite-terrestrial integrated edge computing networks: Architecture, challenges, and open issues[J]. IEEE Network, 2020, 34(3): 224–231. doi: 10.1109/MNET.011.1900369
    [2] 蔚保国, 鲍亚川, 魏海涛. 面向时间同步业务的空间信息网络拓扑聚合图模型[J]. 电子与信息学报, 2017, 39(12): 2929–2936. doi: 10.11999/JEIT170252

    YU Baoguo, BAO Yachuan, and WEI Haitao. Time synchronization service oriented topology aggregation model of space information network[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2929–2936. doi: 10.11999/JEIT170252
    [3] 吕梦昭. 空间时延敏感通信关键技术研究[D]. [硕士论文], 电子科技大学, 2020.

    LV Mengzhao. Research on key technologies of space time delay sensitive communication[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020.
    [4] NASRALLAH A, THYAGATURU A S, ALHARBI Z, et al. Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 88–145. doi: 10.1109/COMST.2018.2869350
    [5] HUANG Li, LIANG Yun, ZHANG Yajian, et al. Time-sensitive network technology and its application in energy internet[C]. 2019 IEEE International Conference on Energy Internet (ICEI), Nanjing, China, 2019: 211–216.
    [6] ZHOU Zefeng and SHOU Guochu. An efficient configuration scheme of OPC UA TSN in industrial internet[C]. 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019: 1548–1551.
    [7] ZHOU Zifan, LEE J, BERGER M S, et al. Simulating TSN traffic scheduling and shaping for future automotive Ethernet[J]. Journal of Communications and Networks, 2021, 23(1): 53–62. doi: 10.23919/JCN.2021.000001
    [8] SEIJO Ó, LÓPEZ-FERNÁNDEZ J A, and VAL I. w-SHARP: Implementation of a high-performance wireless time-sensitive network for low latency and ultra-low cycle time industrial applications[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3651–3662. doi: 10.1109/TII.2020.3007323
    [9] BHATTACHARJEE S, SCHMIDT R, KATSALIS K, et al. Time-sensitive networking for 5G fronthaul networks[C]. The ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–7.
    [10] WANG Xinheng, XU Chuan, ZHAO Guofeng, et al. Tuna: An efficient and practical scheme for wireless access point in 5G networks virtualization[J]. IEEE Communications Letters, 2018, 22(4): 748–751. doi: 10.1109/LCOMM.2017.2768511
    [11] CHAINE P J, BOYER M, PAGETTI C, et al. TSN support for quality of service in space[C]. The 10th European Congress on Embedded Real Time Software and Systems (ERTS 2020), Toulouse, France, 2020: 1–7.
    [12] SEIJO O, FERNÁNDEZ Z, VAL I, et al. SHARP: Towards the integration of time-sensitive communications in legacy LAN/WLAN[C]. 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018: 1–7.
    [13] LARRAÑAGA A, LUCAS-ESTAÑ M C, MARTINEZ I, et al. Analysis of 5G-TSN integration to support industry 4.0[C]. The 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 2020: 1111–1114.
    [14] GINTHÖR D, GUILLAUME R, VON HOYNINGEN-HUENE J, et al. End-to-end optimized joint scheduling of converged wireless and wired time-sensitive networks[C]. The 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 2020: 222–229.
    [15] 王鹏宇. 飞行器编队网络测距技术研究[J]. 遥测遥控, 2019, 40(2): 22–30. doi: 10.3969/j.issn.2095-1000.2019.02.004

    WANG Pengyu. Research on ranging technique for spacecraft formation flying network[J]. Journal of Telemetry,Tracking and Command, 2019, 40(2): 22–30. doi: 10.3969/j.issn.2095-1000.2019.02.004
    [16] ZHENG Ge, YAO Yiping, WANG Dongdong, et al. Study of an access protocol for satellite network with open TDMA[C]. 2020 International Conference on Wireless Communications and Smart Grid (ICWCSG), Qingdao, China, 2020: 37–42.
    [17] SUHAIL N A, LUBEGA J T, and MAIGA G. Optimization based multimedia performance to enhance blended learning experience in constrained low bandwidth environment[C]. The 4th International Conference on Hybrid Learning, Hong Kong, China, 2011: 188–199.
    [18] 苏春, 李乐. 基于隐半马尔科夫退化模型的非等周期预防性维修优化[J]. 东南大学学报:自然科学版, 2021, 51(2): 342–349. doi: 10.3969/j.issn.1001-0505.2021.02.022

    SU Chun and LI Le. Optimization of non-equal periodic preventive maintenance based on hidden semi-Markov degradation model[J]. Journal of Southeast University:Natural Science Edition, 2021, 51(2): 342–349. doi: 10.3969/j.issn.1001-0505.2021.02.022
    [19] WEI Y H, LENG Quan, HAN Song, et al. RT-WiFi: Real-time high-speed communication protocol for wireless cyber-physical control applications[C]. The 34th Real-Time Systems Symposium, Vancouver, Canada, 2013: 140–149.
    [20] SHOAEI A D, DERAKHSHANI M, PARSAEEFARD S, et al. Learning-based hybrid TDMA-CSMA MAC protocol for virtualized 802.11 WLANs[C]. The 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 2015: 1861–1866.
    [21] 严冰, 张进, 罗亚中. 面向编队卫星的空间系绳在轨服务[J]. 系统工程与电子技术, 2021, 43(3): 806–813. doi: 10.12305/j.issn.1001-506X.2021.03.26

    YAN Bing, ZHANG Jin, and LUO Yazhong. On-orbit service for formation satellites with space tether[J]. Systems Engineering and Electronics, 2021, 43(3): 806–813. doi: 10.12305/j.issn.1001-506X.2021.03.26
    [22] 范本尧, 刘天雄, 徐峰, 等. 全球卫星导航系统数据传输业务发展研究[J]. 航天器工程, 2016, 25(3): 1–8. doi: 10.3969/j.issn.1673-8748.2016.03.001

    FAN Benyao, LIU Tianxiong, XU Feng, et al. Research on data transmission service development of global satellite navigation system[J]. Spacecraft Engineering, 2016, 25(3): 1–8. doi: 10.3969/j.issn.1673-8748.2016.03.001
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  593
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-09-04
  • 录用日期:  2021-09-04
  • 网络出版日期:  2021-12-20
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回