高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高频场景候选波形方案

段向阳 辛雨 暴桐 华健

段向阳, 辛雨, 暴桐, 华健. 一种高频场景候选波形方案[J]. 电子与信息学报, 2021, 43(1): 60-67. doi: 10.11999/JEIT200236
引用本文: 段向阳, 辛雨, 暴桐, 华健. 一种高频场景候选波形方案[J]. 电子与信息学报, 2021, 43(1): 60-67. doi: 10.11999/JEIT200236
Xiangyang DUAN, Yu XIN, Tong BAO, Jian HUA. A Candidate Waveform Scheme for High-Frequency Scenarios[J]. Journal of Electronics & Information Technology, 2021, 43(1): 60-67. doi: 10.11999/JEIT200236
Citation: Xiangyang DUAN, Yu XIN, Tong BAO, Jian HUA. A Candidate Waveform Scheme for High-Frequency Scenarios[J]. Journal of Electronics & Information Technology, 2021, 43(1): 60-67. doi: 10.11999/JEIT200236

一种高频场景候选波形方案

doi: 10.11999/JEIT200236
基金项目: 广东省重点领域研发计划(2019B010157001)
详细信息
    作者简介:

    段向阳:男,1973年生,研究方向为无线通信新技术,6G总体技术规划等

    辛雨:男,1976年生,博士,研究方向为6G物理层关键技术等

    暴桐:女,1992年生,硕士,研究方向为太赫兹场景新波形及调制技术等

    华健:男,1991年生,硕士,研究方向为高频场景相位噪声及低峰均比方案等

    通讯作者:

    暴桐 bao.tong@zte.com.cn

  • 中图分类号: TN928

A Candidate Waveform Scheme for High-Frequency Scenarios

Funds: The Key-Area Research and Development Program of Guangdong Province (2019B010157001)
  • 摘要: 针对高频场景(>52.6 GHz)面临的主要问题:路径损耗比较大、功率放大器的效率比较低和相位噪声比较高等,该文设计了一种高频场景候选波形方案。该候选波形方案包括基本符号结构的增强设计、发射端和接收端结构的增强设计,以及尾部序列长度可变方案设计等。相比于5G现有波形DFT-s-OFDM,该文提出的高频场景候选波形方案具有更高的频谱效率。仿真结果显示该候选波形方案具有峰均比低、相位噪声估计效果好和带外泄漏小等优点。
  • 图  1  5G NR现有的波形DFT-s-OFDM和高频场景候选波形时域数据的基本符号结构

    图  2  高频场景候选波形的发射端、接收端结构的增强设计

    图  3  上行链路尾部序列(S1)长度可变方案

    图  4  下行链路尾部序列(S1)长度可变方案

    图  5  高频场景候选波形(E DFT-s-OFDM)与5G现有波形DFT-s-OFDM的PAPR性能比较

    图  6  高频场景候选波形(E DFT-s-OFDM)与5G现有波形DFT-s-OFDM的BLER性能比较

    图  7  高频场景候选波形(E DFT-s-OFDM)与5G现有波形DFT-s-OFDM的PSD比较

    表  1  仿真参数

    参数DFT-s-OFDME DFT-s-OFDM
    调制方案π/2 BPSK
    FFT点数288
    IFFT点数4096
    DMRSZC Sequence(ZadOff-Chu Sequence)
    (S2, S1)序列长度无(有CP)(6,14)
    FDSS无或者根升余弦滤波器,滚降因子:0.3根升余弦滤波器,滚降因子:0.3
    下载: 导出CSV

    表  2  仿真参数

    参数取值
    DFT-s-OFDME DFT-s-OFDM
    天线SISO(Single Input Single Output)
    载频60 GHz
    编码调制方案LDPC(Low Density Parity Check, CodeRate=1/2), 16QAM
    子带带宽24 RB(12 subcarriers per Resource Block)
    子载波间隔960 kHz
    FFT大小4096
    信道类型TDL-A(延时扩展: 10 ns,多普勒频移: 10 Hz)
    CP长度0.037 μs
    (S2和S1)序列长度无(有CP)(6,14)
    DMRSZC Sequence(ZadOff-Chu Sequence)
    PTRS时域密度为1;有4组PTRS,每组含有2个样点
    FDSS根升余弦滤波器,滚降因子:0.3
    下载: 导出CSV
  • POPOVSKI P, TRILLINGSGAARD K F, SIMEONE O, et al. 5G Wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view[J]. IEEE Access, 2018, 6: 55765–55779. doi: 10.1109/ACCESS.2018.2872781
    3GPP R1–1803552 CR to 38.211 capturing the Jan18 ad-hoc and RAN1#92 meeting agreements[S]. 2018.
    赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学: 信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033

    ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Scientia Sinica Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033
    WELLS J. Faster than fiber: The future of multi-G/s wireless[J]. IEEE Microwave Magazine, 2009, 10(3): 104–112. doi: 10.1109/MMM.2009.932081
    陈亮, 余少华. 6G移动通信发展趋势初探(特邀)[J]. 光通信研究, 2019, 45(4): 1–8.

    CHEN Liang and YU Shaohua. Preliminary study on the trend of 6G mobile communication[J]. Study on Optical Communications, 2019, 45(4): 1–8.
    SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
    刘西川, 宋堃, 高太长, 等. 复杂大气条件对微波传播衰减的影响研究[J]. 电子与信息学报, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253

    LIU Xichuan, SONG Kun, GAO Taichang, et al. Research on the effect of complex atmospheric condition on microwave propagation attenuation[J]. Journal of Electronics &Information Technology, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253
    邢金强, 马帅, 肖善鹏. 高频段5G终端射频实现与挑战[J]. 移动通信, 2017, 41(7): 15–19. doi: 10.3969/j.issn.1006-1010.2017.07.003

    XING Jinqiang, MA Shuai, and XIAO Shanpeng. Implementation and challenge of high-frequency 5G terminal[J]. Mobile Communications, 2017, 41(7): 15–19. doi: 10.3969/j.issn.1006-1010.2017.07.003
    CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35.
    LEVINBOOK Y, EZRI D, and MELZER E. Low-PAPR OFDM-based waveform for fifth-generation cellular communications[C]. 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 2017: 187–192. doi: 10.1109/COMCAS.2017.8244846.
    KIM J, YUN Y H, KIM C, et al. Minimization of PAPR for DFT-Spread OFDM with BPSK symbols[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11746–11758. doi: 10.1109/TVT.2018.2874688
    KIM J, YUN Y H, KIM C, et al. A further PAPR reduction for π/2 BPSK in 5G new radio[C]. The 88th IEEE Vehicular Technology Conference, Chicago, USA, 2018. doi: 10.1109/VTCFall.2018.8690859.
    SIBEL J C. Pilot-based phase noise tracking for uplink DFT-s-OFDM in 5G[C]. The 25th International Conference on Telecommunications (ICT), St. Malo, France, 2018: 52–56.
    3GPP TS38.211 Technical specification group radio access network; NR; Physical channels and modulation[S]. 2016.
    BOONKAJAY A and ADACHI F. Single-carrier transmission with frequency-domain based code-division multi-access[C]. The 20th Asia-Pacific Conference on Communication, Pattaya, Thailand, 2014: 233–238.
    3GPP TR38.901 Technical specification group radio access networks. Study on channel model for frequencies from 0.5 to 100 GHz[S]. 2017.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  727
  • HTML全文浏览量:  440
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-03
  • 修回日期:  2020-10-20
  • 网络出版日期:  2020-11-07
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回