高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异构蜂窝网络中基于能效的非正交多址接入下行功率分配算法

张双 康桂霞

张双, 康桂霞. 异构蜂窝网络中基于能效的非正交多址接入下行功率分配算法[J]. 电子与信息学报, 2020, 42(11): 2656-2663. doi: 10.11999/JEIT190492
引用本文: 张双, 康桂霞. 异构蜂窝网络中基于能效的非正交多址接入下行功率分配算法[J]. 电子与信息学报, 2020, 42(11): 2656-2663. doi: 10.11999/JEIT190492
Shuang ZHANG, Guixia KANG. Energy Efficient Power Allocation with NOMA in Downlink Heterogeneous Networks[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2656-2663. doi: 10.11999/JEIT190492
Citation: Shuang ZHANG, Guixia KANG. Energy Efficient Power Allocation with NOMA in Downlink Heterogeneous Networks[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2656-2663. doi: 10.11999/JEIT190492

异构蜂窝网络中基于能效的非正交多址接入下行功率分配算法

doi: 10.11999/JEIT190492
基金项目: 国家重大专项(2017ZX03001022)
详细信息
    作者简介:

    张双:女,1989年生,博士生,研究方向为异构网络、非正交多址接入技术、绿色蜂窝网络

    康桂霞:女,1972年生,博士生导师,研究方向为移动物联通信、大数据人工智能技术

    通讯作者:

    康桂霞 gxkang@bupt.edu.cn

  • 中图分类号: TN929.5

Energy Efficient Power Allocation with NOMA in Downlink Heterogeneous Networks

Funds: The National Science and Technology Major Project of China (2017ZX03001022)
  • 摘要: 该文针对应用非正交多址接入(NOMA)技术的异构蜂窝网络,在考虑层间层内干扰的情况下,提出一种能效最大化的功率分配算法。该算法主要包括两部分,一部分为子信道内用户功率分配因子的求解,主要利用差分优化的方法,迭代求解。另一部分为子信道间的功率分配,主要利用凹凸程序法将原有的非凸问题简化为可解的凸问题,最后利用拉格朗日求解法得出功率最优解。仿真结果表明该算法有良好的迭代性,且新算法表明利用NOMA技术得到的系统能效较利用正交技术得到的系统能效提高了至少44%以上。
  • 图  1  不同最大发送功率下的能效值

    图  2  不同用户速率要求下的能效值

    图  3  算法收敛性能

    表  1  子信道内用户功率分配因子算法

     DC programing功率分配因子算法
     1.初始化:设置${(\alpha _f^n)^c}$的初始值;设置迭代索引$c = 0$;设置最大迭代次数${C_{\max }}$以及容忍度$\mu $的值;计算式
      $q({(\alpha _f^n)^0}) = f({(\alpha _f^n)^0}) - g({(\alpha _f^n)^0})$的值。
     2. repeat
     3. 计算式(8)获取最优功率分配因子${(\alpha _f^n)^*}$
     4. $c = c + 1$,${(\alpha _f^n)^c} = {(\alpha _f^n)^*}$,计算$q({(\alpha _f^n)^c}) = f({(\alpha _f^n)^c}) - g({(\alpha _f^n)^c})$
     5. until $\left| {q({{(\alpha _f^n)}^c}) - q({{(\alpha _f^n)}^{c - 1}})} \right| \le \mu $ or $c > {C_{\max }}$
     6. ${(\alpha _f^n)^*} = {(\alpha _f^n)^c}$
    下载: 导出CSV

    表  2  子信道间功率分配算法

     CCCP信道功率分配算法
     1:初始化 设置迭代索引$v = 0$,误差容忍度$\xi > 0$。设置初始化${{{P}}^0}$,最大迭代次数${V_{\max }}$,计算${\left( {\lambda _f^n} \right)^0} = {1 / {\left( {{{\left( {p_f^n} \right)}^0} + {p_c}} \right)}}$,
       ${(\gamma _f^n)^0} = {{R_f^n\left( {{{(p_f^n)}^0}} \right)} / {\left( {{{(p_f^n)}^0} + {p_c}} \right)}}$
     2: repeat
     3:利用拉格朗日对偶求解${\left( {{{{P}}^*}} \right)^v}$即${{{P}}^{v + 1}}$其中${\left( {{{{P}}^*}} \right)^v}$满足式(35)和式(36)。
     4:根据式(12)更新${(\lambda _f^n)^{v + 1}}$和${(\gamma _f^n)^{v + 1}}$的值。
     5:设置$v = v + 1$
     6: until $\left| {\mathop {\max }\limits_{{P} } \left\{ {\displaystyle\sum\limits_{f = 1}^F { { {(\lambda _f^n)}^v}[R_f^n({ {(p_f^n)}^v})(1 + { {\beta \left( { { {(p_f^n)}^v} + {p_c} } \right)} / B}) - { {(\gamma _f^n)}^v}({ {(p_f^n)}^v} + {p_c})]} } \right\} } \right| \le \xi$ or $v > {V_{\max }}$
    下载: 导出CSV
  • DAMNJANOVIC A, MONTOJO J, WEI Yongbin, et al. A survey on 3GPP heterogeneous networks[J]. IEEE Wireless Communications, 2011, 18(3): 10–21. doi: 10.1109/MWC.2011.5876496
    DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558
    FANG Fang, CHENG Julian, and DING Zhiguo. Joint energy efficient subchannel and power optimization for a downlink NOMA heterogeneous network[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1351–1364. doi: 10.1109/TVT.2018.2881314
    MOKDAD A, AZMI P, and MOKARI N. Radio resource allocation for heterogeneous traffic in GFDM-NOMA heterogeneous cellular networks[J]. IET Communications, 2016, 10(12): 1444–1455. doi: 10.1049/iet-com.2016.0011
    SONG Zhengyu, NI Qiang, and SUN Xin. Distributed power allocation for nonorthogonal multiple access heterogeneous networks[J]. IEEE Communications Letter, 2018, 22(3): 622–625. doi: 10.1109/LCOMM.2017.2789282
    NASSER A, MUTA O, ELSABROUTY M, et al. Compressive sensing based spectrum allocation and power control for NOMA HetNets[J]. IEEE Access, 2019, 7: 98495–98506. doi: 10.1109/ACCESS.2019.2929185
    NI Dadong, HAO Li, TRAN Q T, et al. Power allocation for downlink NOMA heterogeneous networks[J]. IEEE Access, 2018, 6: 26742–26752. doi: 10.1109/ACCESS.2018.2835568
    STEFANO B, CHIH L I, THIERR Y E, et al. A survey of energy-efficient techniques for 5G networks and challenges ahead[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 697–709. doi: 10.1109/JSAC.2016.2550338
    QIN Zhijin, YUE Xinwei, LIU Yuanwei, et al. User association and resource allocation in unified NOMA enabled heterogeneous Ultra dense networks[J]. IEEE Communications Magazine, 2018, 56(6): 86–92. doi: 10.1109/MCOM.2018.1700497
    AN L T H and TAO P D. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[J]. Annals of Operations Research, 2005, 133(1): 23–46. doi: 10.1007/s10479-004-5022-1
    SRIPERUMBUDUR B K and LANCKRIET G R G. On the convergence of the concave-convex procedure[C]. The 22nd International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2009: 1759–1767.
    FANG Fang, ZHANG Haijun, CHENG Julian, et al. Energy efficiency of resource scheduling for non-orthogonal multiple access (NOMA) wireless network[C]. 2016 IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 2016: 1–5. doi: 10.1109/ICC.2016.7511239.
    CHEN Qimei, YU Guanding, YIN Rui, et al. Energy-efficient user association and resource allocation for multistream carrier aggregation[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6366–6376. doi: 10.1109/TVT.2015.2472558
    BAZARAA M S, SHERALI H D, and SHETTY C M. Nonlinear Programming: Theory and Algorithms[M]. 3rd ed. New York: Wiley, 2013.
    YE Qiaoyang, RONG Beiyu, CHEN Yudong, et al. User association for load balancing in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2706–2716. doi: 10.1109/TWC.2013.040413.120676
    KHA H H, TUAN H D, and NGUYEN H H. Fast global optimal power allocation in wireless networks by local D.C. programming[J]. IEEE Transactions on Wireless Communications, 2012, 11(2): 510–515. doi: 10.1109/TWC.2011.120911.110139
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1380
  • HTML全文浏览量:  651
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 修回日期:  2020-04-13
  • 网络出版日期:  2020-08-31
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回