高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波变换的多分辨率锥束CT图像快速三维重建算法

韩民 成旭 李登旺

韩民, 成旭, 李登旺. 基于小波变换的多分辨率锥束CT图像快速三维重建算法[J]. 电子与信息学报, 2017, 39(10): 2437-2441. doi: 10.11999/JEIT170003
引用本文: 韩民, 成旭, 李登旺. 基于小波变换的多分辨率锥束CT图像快速三维重建算法[J]. 电子与信息学报, 2017, 39(10): 2437-2441. doi: 10.11999/JEIT170003
HAN Min, CHENG Xu, LI Dengwang. Fast 3D Reconstruction Algorithm of Multi-resolution Cone Beam CT Image Based on Wavelet Transform[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2437-2441. doi: 10.11999/JEIT170003
Citation: HAN Min, CHENG Xu, LI Dengwang. Fast 3D Reconstruction Algorithm of Multi-resolution Cone Beam CT Image Based on Wavelet Transform[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2437-2441. doi: 10.11999/JEIT170003

基于小波变换的多分辨率锥束CT图像快速三维重建算法

doi: 10.11999/JEIT170003
基金项目: 

国家自然科学基金(61471226),山东省自然科学杰出青年基金(JQ201516)

Fast 3D Reconstruction Algorithm of Multi-resolution Cone Beam CT Image Based on Wavelet Transform

Funds: 

The National Natural Science Foundation of China (61471226), The Distinguished Young Scholars of Shandong Province(JQ201516)

  • 摘要: 为了解决FDK重建算法在锥束CT重建中运算量大,耗时较多,以及针对不同的应用环境提供不同分辨率的3维医学图像问题,该文提出一种基于小波变换的多分辨率锥束CT图像快速3维重建算法。首先对采集到的投影图像进行相应尺度的小波变换,得到各尺度小波分解系数,选择相应尺度的小波系数进行FDK重建,可以得到相应低分辨率的3维图像数据,还可根据需要由得到的低分辨率重建数据分别沿着径向取断层图像,进行相应的小波逆变换,进而得到高分辨率的3维图像数据。实验数据表明,该方法不仅能够得到不同分辨率的3维图像数据,而且相较于传统的FDK算法生成分辨率相同、精度相近的高分辨率3维图像数据,重建速度可以提高1倍以上。
  • ZOU Xiaobing and ZENG Li. Weighted FDK algorithm from spiral cone-beam computed tomography with displaced detector[J]. Journal of Medical Imaging and Health Informatics, 2015, 5(2): 290-295. doi: 10.1166/jmihi.2015.1389.
    闫镔, 韩玉, 魏峰, 等. 锥束CT超视野成像重建算法综述[J]. CT理论与应用研究, 2013, 22(2): 373-384.
    YAN Bin, HAN Yu, WEI Feng, et al. Review of algorithms for over FOV size object in cone-beam CT[J]. ComputerizedTomography Theory and Application, 2013, 22(2): 373-384.
    FELDKAMP L, DAVIS L C, and KRESS J. Practical conebeam algorithm[J]. Journal of the Optical Society of America A, 1984, 1(6): 612-619. doi: 10.1364/JOSAA. 1.000612.
    WANG Ge, LIN Teinhsiang, and CHENG Pingchin. A general cone-beam reconstruction algorithm[J]. IEEE Transactions on Medical Imaging, 1993, 12(3): 486-496. doi: 10.1109/42.241876.
    TURBELL H. Cone-beam reconstruction using filtered backprojection[D]. [Ph.D. dissertation], The Linkoping University, 2001.
    GRASS M, KOHLER T, and PROKSA R. Angular weighted hybrid cone-beam CT reconstruction for circular trajectories
    [J]. Physics in Medicine Biology, 2001, 46(6): 1595-1610. doi: 10.1088/0031-9155/46/6/301.
    JIN Xinyu, BAI Fudong, and LAN Yizheng. A novel interpolation algorithm to improve FDK performance[C]. International Symposium on Computational Intelligence and Design, Hangzhou, 2015: 247-249. doi: 10.1109/ISCID.2015.37.
    DOMINGUEZ J, ASSIS J, et al. Speeding up the FDK Algorithm for tomographic image reconstruction in multicore processors with hyper-threading technology[J]. IEEE Latin America Transactions, 2015, 13(1): 359-364. doi: 10.1109/
    TLA.2015.7040670.
    张文昆, 闫镔, 蔡爱龙, 等. 选择性重排FDK算法及其GPU加速优化[J]. CT理论与应用研究, 2015, 24(3): 383-392. doi: 10.15953/j.1004-4140.2015.24.03.07.
    ZHANG Wenkun, YAN Bin, CAI Ailong, et al. Selective
    projection-rebin FDK algorithm and its efficient GPU implementation[J]. Computerized Tomography Theory and
    Application, 2015, 24(3): 383-392. doi: 10.15953/j.1004-4140.2015.24.03.07.
    GUO Bin, LIU Bo, and ZHOU Fugen. A modified FDK with misaligned parameters of flat-panel detector in cone-beamCT[C]. IEEE International Conference on Medical Imaging Physics and Engineering, Shenyang, 2013: 223-227. doi: 10.
    ZHANG Yan. Three-dimensional image quality evaluation
    and improvement in flat-panel detector based cone-beam CT
    image[D]. [Ph.D. dissertation], The Rochester University, 2009.
    MALLAT S G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. doi: 10.1109/34.192463.
    WANG Yu, OU Zongying, and WANG Feng. Modified FDKalgorithm for cone-beam reconstruction with efficient
    weighting scheme[C]. World Congress on Intelligent Control
    and Automation, Dalian, 2006: 9703-9707. doi: 10.1109/ WCICA.2006.1713887.
    ZHANG Feng, YAN Bin, and LI Lei. An image reconstructionstrategy for truncated projections of planar object in cone- beam CT[C]. International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, 2015: 1113-1117. doi: 10.1109/FSKD.2015.7382098.
    YANG Hongcheng, GAO Xin, XU Chuan, et al. A backprojection weight-based FDK reconstruction algorithm for cone beam digital subtraction angiography[C]. InternationalConference on Biomedical Engineering and Informatics, Chongqing, 2012: 1-5. doi: 10.1109/BMEI.2012.6513031.
    /ICMIPE.2013.6864539.
  • 加载中
计量
  • 文章访问数:  1260
  • HTML全文浏览量:  108
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 修回日期:  2017-04-05
  • 刊出日期:  2017-10-19

目录

    /

    返回文章
    返回