高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向6G多维扩展的新型多址接入技术综述

逄小玮 蒋旭 卢华兵 赵楠

逄小玮, 蒋旭, 卢华兵, 赵楠. 面向6G多维扩展的新型多址接入技术综述[J]. 电子与信息学报. doi: 10.11999/JEIT231265
引用本文: 逄小玮, 蒋旭, 卢华兵, 赵楠. 面向6G多维扩展的新型多址接入技术综述[J]. 电子与信息学报. doi: 10.11999/JEIT231265
PANG Xiaowei, JIANG Xu, LU Huabing, ZHAO Nan. An Overview of Novel Multi-access Techniques for Multi-dimensional Expanded 6G[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231265
Citation: PANG Xiaowei, JIANG Xu, LU Huabing, ZHAO Nan. An Overview of Novel Multi-access Techniques for Multi-dimensional Expanded 6G[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231265

面向6G多维扩展的新型多址接入技术综述

doi: 10.11999/JEIT231265
基金项目: 国家重点研发计划(2020YFB1807002),国家自然科学基金 (62101091, 62371087),辽宁省应用基础研究计划(2023TH2/101300197)
详细信息
    作者简介:

    逄小玮:女,博士生,研究方向为无人机通信、智能反射面、非正交多址接入、通感一体化

    蒋旭:男,副教授,研究方向为通感一体化、无人机通信、隐蔽通信

    卢华兵:男,助理研究员,研究方向为通感一体化、无人机通信、物理层安全

    赵楠:男,教授,博士生导师,研究方向为通感一体化、无人机通信、非正交多址接入、干扰管理、绿色通信

    通讯作者:

    赵楠 zhaonan@dlut.edu.cn

  • 中图分类号: TN915

An Overview of Novel Multi-access Techniques for Multi-dimensional Expanded 6G

Funds: The National Key R&D Program of China (2020YFB1807002), The National Natural Science Foundation of China (62101091,62371087), Application and Fundamental Research Planning Project in Liaoning Province (2023TH2/101300197)
  • 摘要: 随着移动通信技术的不断演进,第6代移动通信(6G)将实现从万物互联到万物智联的跨越,满足更高的数据需求和更广泛的应用场景。新型多址接入技术和多维扩展技术将在6G中协同发挥作用,为构建高效、智能、可靠的通信网络提供关键支持,满足未来通信的多重需求。该文旨在探讨新型多址接入技术在6G多维扩展通信网络中的应用潜力。首先,该文对比了传统多址接入技术与6G潜在新型多址接入技术,并重点阐述了非正交多址接入技术在提升频谱效率和系统容量方面的优势。然后,详细介绍了卫星通信、无人机(UAV)通信和智能反射面(IRS)等多维扩展技术在6G场景下的优势。进一步,讨论了新型多址技术与卫星通信、UAV以及IRS相结合的优势及协同应用。最后,探讨了基于新型多址接入技术的多维扩展网络中的关键技术挑战,包括大规模多入多出技术、太赫兹技术、通感算一体化、用户信息安全、不完美信道状态信息(CSI)估计,同时对新型编码技术、人工智能和机器学习等研究方向进行了展望。
  • 图  1  正交与非正交多址接入方式资源利用图

    图  2  空天地一体化网络架构

    图  3  基于新型多址技术的卫星通信网络

    图  4  基于NOMA的UAV下/上行通信场景

    图  5  基于NOMA的IRS辅助网络场景

    表  1  6G多维扩展网络中新型多址接入技术研究总结

    参考文献多址接入技术多维扩展技术研究场景主要研究目的
    [35]NOMA低轨卫星物联网大规模接入最小化网络总功耗
    [36]NOMA卫星,UAV空天地一体化中继最大化无人机能效
    [37]合作式NOMAUAV蜂窝连接UAV最大化上行加权和速率
    [38]RSMAUAVUAV服务地面用户最大化用户加权和速率
    [39]
    [40]
    NOMA
    NOMA
    UAV, IRS
    UAV, 可同时反射和透射的智能表面
    移动边缘计算
    室内外全覆盖
    最大化无人机计算能力
    最大化网络和速率
    下载: 导出CSV
  • [1] 邓伟, 郝悦, 胡南, 等. 5G网络演进与6G展望[J]. 信息通信技术, 2021, 15(5): 8–14. doi: 10.3969/j.issn.1674-1285.2021.05.002

    DENG Wei, HAO Yue, HU Nan, et al. 5G network evolution and 6G prospect[J]. Information and Communications Technologies, 2021, 15(5): 8–14. doi: 10.3969/j.issn.1674-1285.2021.05.002
    [2] 张平, 牛凯, 田辉, 等. 6G移动通信技术展望[J]. 通信学报, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022

    ZHANG Ping, NIU Kai, TIAN Hui, et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022
    [3] 赛迪智库无线管理研究所. 6G概念及愿景白皮书[N]. 中国计算机报, 2020-05-11(008).
    [4] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6
    [5] GUAN Yueshi, WANG Yijie, BIAN Qing, et al. High-efficiency self-driven circuit with parallel branch for high frequency converters[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 926–931. doi: 10.1109/TPEL.2017.2724545
    [6] 赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学:信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033

    ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Scientia Sinica Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033
    [7] 施建锋, 杨照辉, 黄诺, 等. 面向6G的用户为中心网络研究综述[J]. 电子与信息学报, 2023, 45(5): 1873–1887. doi: 10.11999/JEIT220242

    SHI Jianfeng, YANG Zhaohui, HUANG Nuo, et al. A survey on user-centric networks for 6G[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1873–1887. doi: 10.11999/JEIT220242
    [8] 张海君, 陈安琪, 李亚博, 等. 6G移动网络关键技术[J]. 通信学报, 2022, 43(7): 189–202. doi: 10.11959/j.issn.1000-436x.2022140

    ZHANG Haijun, CHEN Anqi, LI Yabo, et al. Key technologies of 6G mobile network[J]. Journal on Communications, 2022, 43(7): 189–202. doi: 10.11959/j.issn.1000-436x.2022140
    [9] 毕奇, 梁林, 杨姗, 等. 面向5G的非正交多址接入技术[J]. 电信科学, 2015, 31(5): 14–21. doi: 10.11959/j.issn.1000-0801.2015137

    BI Qi, LIANG Lin, YANG Shan, et al. Non-orthogonal multiple access technology for 5G systems[J]. Telecommunications Science, 2015, 31(5): 14–21. doi: 10.11959/j.issn.1000-0801.2015137
    [10] 董园园, 巩彩红, 李华, 等. 面向6G的非正交多址接入关键技术[J]. 移动通信, 2020, 44(6): 57–62,69. doi: 10.3969/j.issn.1006-1010.2020.06.009

    DONG Yuanyuan, GONG Caihong, LI Hua, et al. The key technologies of non-orthogonal multiple access for 6G systems[J]. Mobile Communications, 2020, 44(6): 57–62,69. doi: 10.3969/j.issn.1006-1010.2020.06.009
    [11] DING Zhiguo, ADACHI F, and POOR H V. The application of MIMO to non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 537–552. doi: 10.1109/TWC.2015.2475746
    [12] FANG Xinran, FENG Wei, WEI Te, et al. 5G embraces satellites for 6G ubiquitous IoT: Basic models for integrated satellite terrestrial networks[J]. IEEE Internet of Things Journal, 2021, 8(18): 14399–14417. doi: 10.1109/JIOT.2021.3068596
    [13] 张平, 张建华, 戚琦, 等. Ubiquitous-X: 构建未来6G网络[J]. 中国科学:信息科学, 2020, 50(6): 913–930. doi: 10.1360/SSI-2020-0068

    ZHANG Ping, ZHANG Jianhua, QI Qi, et al. Ubiquitous-X: Constructing the future 6G networks[J]. Scientia Sinica Informationis, 2020, 50(6): 913–930. doi: 10.1360/SSI-2020-0068
    [14] ZHAO Yue, XIE Lei, CHEN Huifang, et al. Ergodic channel capacity analysis of downlink in the hybrid satellite-terrestrial cooperative system[J]. Wireless Personal Communications, 2017, 96(3): 3799–3815. doi: 10.1007/s11277-017-4207-2
    [15] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789
    [16] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/mcom.001.1900107
    [17] WONG C Y, CHENG R S, LATAIEF K B, et al. Multiuser OFDM with adaptive subcarrier, bit, and power allocation[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(10): 1747–1758. doi: 10.1109/49.793310
    [18] STEELE R and HANZO L. Mobile Radio Communications: Second and Third Generation Cellular and WATM Systems[M]. 2nd ed. New York: Wiley, 1999.
    [19] GILHOUSEN K S, JACOBS I M, PADOVANI R, et al. On the capacity of a cellular CDMA system[J]. IEEE Transactions on Vehicular Technology, 1991, 40(2): 303–312. doi: 10.1109/25.289411
    [20] LI Junyi, WU Xinzhou, and LAROIA R. OFDMA Mobile Broadband Communications: A Systems Approach[M]. Cambridge, UK: Cambridge University Press, 2013.
    [21] DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519
    [22] YU Wei, RHEE W, BOYD S, et al. Iterative water-filling for Gaussian vector multiple access channels[C]. 2001 IEEE International Symposium on Information Theory, Washington, USA, 2001: 322.
    [23] DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558
    [24] HOSHYAR R, WATHAN F P, and TAFAZOLLI R. Novel low-density signature for synchronous CDMA systems over AWGN channel[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1616–1626. doi: 10.1109/TSP.2007.909320
    [25] ZHANG Jiankang, CHEN Sheng, MU Xiaomin, et al. Evolutionary-algorithm-assisted joint channel estimation and turbo multiuser detection/decoding for OFDM/SDMA[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1204–1222. doi: 10.1109/TVT.2013.2283069
    [26] CLERCKX B, JOUDEH H, HAO Chenxi, et al. Rate splitting for MIMO wireless networks: A promising PHY-layer strategy for LTE evolution[J]. IEEE Communications Magazine, 2016, 54(5): 98–105. doi: 10.1109/mcom.2016.7470942
    [27] CLERCKX B, MAO Yijie, SCHOBER R, et al. Rate-splitting unifying SDMA, OMA, NOMA, and multicasting in MISO broadcast channel: A simple two-user rate analysis[J]. IEEE Wireless Communications Letters, 2020, 9(3): 349–353. doi: 10.1109/LWC.2019.2954518
    [28] MAO Yijie, DIZDAR O, CLERCKX B, et al. Rate-splitting multiple access: Fundamentals, survey, and future research trends[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2073–2126. doi: 10.1109/COMST.2022.3191937
    [29] WU Yongpeng, GAO Xiqi, ZHOU Shidong, et al. Massive access for future wireless communication systems[J]. IEEE Wireless Communications, 2020, 27(4): 148–156. doi: 10.1109/MWC.001.1900494
    [30] LIU Liang and YU Wei. Massive connectivity with massive MIMO—Part I: Device activity detection and channel estimation[J]. IEEE Transactions on Signal Processing, 2018, 66(11): 2933–2946. doi: 10.1109/TSP.2018.2818082
    [31] WONG K K, NEW W K, HAO Xu, et al. Fluid antenna system—Part I: Preliminaries[J]. IEEE Communications Letters, 2023, 27(8): 1919–1923. doi: 10.1109/LCOMM.2023.3284320
    [32] WONG K K and TONG K F. Fluid antenna multiple access[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4801–4815. doi: 10.1109/TWC.2021.3133410
    [33] WU Zidong and DAI Linglong. Multiple access for near-field communications: SDMA or LDMA?[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(6): 1918–1935. doi: 10.1109/JSAC.2023.3275616
    [34] GIORDANI M and ZORZI M. Non-terrestrial networks in the 6G era: Challenges and opportunities[J]. IEEE Network, 2021, 35(2): 244–251. doi: 10.1109/MNET.011.2000493
    [35] CHU Jianhang, CHEN Xiaoming, ZHONG Caijun, et al. Robust design for NOMA-based multibeam LEO satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(3): 1959–1970. doi: 10.1109/JIOT.2020.3015995
    [36] WANG Ningyuan, LI Feng, CHEN Dong, et al. NOMA-based energy-efficiency optimization for UAV enabled space-air-ground integrated relay networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4129–4141. doi: 10.1109/TVT.2022.3151369
    [37] MEI Weidong and ZHANG Rui. Uplink cooperative NOMA for cellular-connected UAV[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 644–656. doi: 10.1109/JSTSP.2019.2899208
    [38] JAAFAR W, NASER S, MUHAIDAT S, et al. On the downlink performance of RSMA-based UAV communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16258–16263. doi: 10.1109/TVT.2020.3037657
    [39] XU Yu, ZHANG Tiankui, ZOU Yixuan, et al. Reconfigurable intelligence surface aided UAV-MEC systems with NOMA[J]. IEEE Communications Letters, 2022, 26(9): 2121–2125. doi: 10.1109/LCOMM.2022.3183285
    [40] SU Yuhua, PANG Xiaowei, LU Weidang, et al. Joint location and beamforming optimization for STAR-RIS aided NOMA-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 11023–11028. doi: 10.1109/TVT.2023.3261324
    [41] ZHAO Nan, PANG Xiaowei, LI Zan, et al. Joint trajectory and precoding optimization for UAV-assisted NOMA networks[J]. IEEE Transactions on Communications, 2019, 67(5): 3723–3735. doi: 10.1109/TCOMM.2019.2895831
    [42] PANG Xiaowei, ZHAO Nan, TANG Jie, et al. IRS-assisted secure UAV transmission via joint trajectory and beamforming design[J]. IEEE Transactions on Communications, 2022, 70(2): 1140–1152. doi: 10.1109/TCOMM.2021.3136563
    [43] 中国通信学会. 通感算一体化网络前沿报告(2021年)[R]. 2022.

    China Institute of Communication. Advanced report on integrated communication, sensing, and computing networks (2021)[R]. 2022.
    [44] LI Qiang, XU Dongyang, NAVAIE K, et al. Covert and secure communications in NOMA networks with internal eavesdropping[J]. IEEE Wireless Communications Letters, 2023, 12(12): 2178–2182. doi: 10.1109/LWC.2023.3312689
    [45] IMT-2030(6G)推进组. 无线AI技术研究报告[R]. 2021. IMT-2030(6G) Promotion Group. Wireless AI Technical Study Report [R]. 2021.

    IMT-2030(6G) Promotion Group. Wireless AI Technical Study Report [R]. 2021.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  72
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-15
  • 修回日期:  2024-01-20
  • 网络出版日期:  2024-02-21

目录

    /

    返回文章
    返回