高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用自适应融合和混合锚检测器的遥感图像小目标检测算法

王坤 丁麒龙

王坤, 丁麒龙. 利用自适应融合和混合锚检测器的遥感图像小目标检测算法[J]. 电子与信息学报. doi: 10.11999/JEIT230966
引用本文: 王坤, 丁麒龙. 利用自适应融合和混合锚检测器的遥感图像小目标检测算法[J]. 电子与信息学报. doi: 10.11999/JEIT230966
WANG Kun, DING Qilong. Remote Sensing Images Small Object Detection Algorithm With Adaptive Fusion and Hybrid Anchor Detector[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230966
Citation: WANG Kun, DING Qilong. Remote Sensing Images Small Object Detection Algorithm With Adaptive Fusion and Hybrid Anchor Detector[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230966

利用自适应融合和混合锚检测器的遥感图像小目标检测算法

doi: 10.11999/JEIT230966
基金项目: 国家自然科学基金(62173331)
详细信息
    作者简介:

    王坤:女,副教授,研究方向为图像处理,故障诊断

    丁麒龙:男,研究生,研究方向为遥感图像目标检测

    通讯作者:

    王坤 yogo_w@163.com

  • 中图分类号: TP751.1

Remote Sensing Images Small Object Detection Algorithm With Adaptive Fusion and Hybrid Anchor Detector

Funds: The National Natural Science Foundation of China (62173331)
  • 摘要: 针对遥感图像背景噪音多,小目标多且密集排列,以及目标尺度分布广导致的遥感图像小目标难以检测的问题,该文提出一种根据不同尺度的特征信息自适应融合的混合锚检测器AEM-YOLO。首先,提出了一种结合目标宽高信息以及尺度宽高比信息的二坐标系k-means聚类算法,生成与遥感图像数据集匹配度较高的锚框。其次,设计了自适应增强模块,用于解决不同尺度特征之间的直接融合导致的信息冲突,并引入更低特征层沿自底向上的路径传播小目标细节信息。通过混合解耦检测头的多任务学习以及引入尺度引导因子,可以有效提高对宽高比大的目标召回率。最后,在DIOR数据集上进行实验表明,相较于原始模型,AEM-YOLO的AP提高了7.8%,在小中大目标的检测中分别提高了5.4%,7.2%,8.6%。
  • 图  1  AEM-YOLO网络结构

    图  2  聚类结果图

    图  3  多尺度融合路径的类激活图

    图  4  自适应融合模块结构

    图  5  混合解耦检测头结构

    图  6  DIOR数据集中的目标在极坐标系下角度与尺度维度上的检测精度

    图  7  不同模块在DIOR数据集上的检测结果

    图  8  不同目标检测方法在DIOR数据集上的检测结果

    表  1  不同平衡系数对有锚检测分支精度的影响

    $ \beta $0.00.10.20.30.40.50.60.70.80.91.0
    mAP(%)81.581.682.082.282.382.182.282.682.482.582.3
    下载: 导出CSV

    表  2  训练参数设定

    参数名称迭代次数批处理大小动量权重衰减
    参数值200160.9370.0005
    下载: 导出CSV

    表  3  不同聚类算法在DIOR数据集实验结果对比(%)

    MethodAPAP50AP75APSAPMAPL
    预设锚框44.375.545.28.133.559.2
    k-means41.975.540.69.433.755.1
    二坐标系k-means44.776.245.811.034.858.5
    下载: 导出CSV

    表  4  不同多尺度融合模块在DIOR数据集实验结果对比(%)

    MethodAPAP50AP75APSAPMAPL
    FPN-PAN47.477.649.311.436.262.3
    Bi-FPN46.677.648.110.037.261.4
    ASFF47.978.349.810.236.463.0
    AEM-F47.678.049.810.936.062.9
    AEM-A48.078.950.213.337.562.5
    AEM49.579.052.212.937.365.0
    下载: 导出CSV

    表  5  不同检测头在DIOR数据集实验结果对比(%)

    MethodAPAP50AP75APSAPMAPL
    Coupled Head44.776.245.811.034.858.5
    Decoupled Head47.477.649.311.436.262.3
    ASFF Head48.378.350.511.136.963.3
    Hybrid Head50.579.453.212.639.166.2
    下载: 导出CSV

    表  6  在DIOR数据集上的消融实验结果(%)

    Pre-trainNeckHeadAPAP50AP75APSAPMAPLPara(M)FPS
    ×××44.375.545.28.133.559.264.061.2
    ××44.776.245.811.034.858.564.061.4
    ×49.579.052.212.937.365.074.052.4
    52.180.955.313.540.767.874.053.6
    下载: 导出CSV

    表  7  不同输入尺寸下在NWPU VHR-10数据集实验结果对比(%)

    算法输入尺寸APAP50AP75APSAPMAPL
    YOLOv4416×41640.583.635.618.438.851.7
    AEM-YOLO416×41645.188.240.629.943.557.5
    YOLOv4608×60844.488.835.222.540.045.5
    AEM-YOLO608×60851.991.749.830.747.054.0
    下载: 导出CSV

    表  8  不同目标检测方法在DIOR数据集实验结果对比

    EfficientDetRetinaNetASFFYOLOv3YOLOv4YOLOv5YOLOXYOLOv6YOLOv7YOLOv8ours
    mAP(%)65.369.079.974.576.977.862.979.378.982.382.6
    GFLOPs21.0152.382.465.764.086.654.260.880.0109.195.8
    FPS34.446.845.382.372.153.564.861.359.757.753.6
    下载: 导出CSV
  • [1] WANG Kun and LIU Maozhen. Toward structural learning and enhanced YOLOv4 network for object detection in optical remote sensing images[J]. Advanced Theory and Simulations, 2022, 5(6): 2200002. doi: 10.1002/adts.202200002.
    [2] 王成龙, 赵倩, 赵琰, 等. 基于深度可分离卷积的实时遥感目标检测算法[J]. 电光与控制, 2022, 29(8): 45–49. doi: 10.3969/j.issn.1671-637X.2022.08.009.

    WANG Chenglong, ZHAO Qian, ZHAO Yan, et al. A real-time remote sensing target detection algorithm based on depth Separable convolution[J]. Electronics Optics & Control, 2022, 29(8): 45–49. doi: 10.3969/j.issn.1671-637X.2022.08.009.
    [3] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv: 2305.09972, 2023. doi: 10.48550/arXiv.2305.09972. (查阅网上资料,不确定文献类型及格式是否正确,请确认) .
    [4] ZHU Chenchen, HE Yihui, and SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 840–849. doi: 10.1109/CVPR.2019.00093.
    [5] LIU Songtao, HUANG Di, and WANG Yunhong. Learning spatial fusion for single-shot object detection[J]. arXiv: 1911.09516, 2019. doi: 10.48550/arXiv.1911.09516. (查阅网上资料,不确定文献类型及格式是否正确,请确认) .
    [6] 马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.

    MA Liang, GOU Yutao, LEI Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electronic Engineering, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.
    [7] 雷大江, 杜加浩, 张莉萍, 等. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1): 237–244. doi: 10.11999/JEIT200792.

    LEI Dajiang, DU Jiahao, ZHANG Liping, et al. Multi-stream architecture and multi-scale convolutional neural network for remote sensing image fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 237–244. doi: 10.11999/JEIT200792.
    [8] QIN Zheng, LI Zeming, ZHANG Zhaoning, et al. ThunderNet: Towards real-time generic object detection on mobile devices[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6717–6726. doi: 10.1109/ICCV.2019.00682.
    [9] KIM M, JEONG J, and KIM S. ECAP-YOLO: Efficient channel attention pyramid YOLO for small object detection in aerial image[J]. Remote Sensing, 2021, 13(23): 4851. doi: 10.3390/rs13234851.
    [10] BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020. doi: 10.48550/arXiv.2004.10934. (查阅网上资料,不确定文献类型及格式是否正确,请确认) .
    [11] ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12993–13000. doi: 10.1609/aaai.v34i07.6999.
    [12] GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv: 2107.08430, 2021. doi: 10.48550/arXiv.2107.08430. (查阅网上资料,不确定文献类型及格式是否正确,请确认) .
    [13] LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023.
    [14] CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119–132. doi: 10.1016/j.isprsjprs.2014.10.002.
    [15] TAN Mingxing, PANG Ruoming, and LE Q V. EfficientDet: Scalable and efficient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10778–10787. doi: 10.1109/CVPR42600.2020.01079.
    [16] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
    [17] WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 7464–7475. doi: 10.1109/CVPR52729.2023.00721.
    [18] LI Chuyi, LI Lulu, JIANG Hongliang, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv: 2209.02976, 2022. doi: 10.48550/arXiv.2209.02976. (查阅网上资料,不确定文献类型及格式是否正确,请确认) .
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  19
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-05-01

目录

    /

    返回文章
    返回