高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网络流量时空特征和自适应加权系数的异常流量检测方法

顾伟 行鸿彦 侯天浩

顾伟, 行鸿彦, 侯天浩. 基于网络流量时空特征和自适应加权系数的异常流量检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT230825
引用本文: 顾伟, 行鸿彦, 侯天浩. 基于网络流量时空特征和自适应加权系数的异常流量检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT230825
GU Wei, XING Hongyan, HOU Tianhao. Abnormal Traffic Detection Method Based on Traffic Spatial-temporal Features and Adaptive Weighting Coefficients[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230825
Citation: GU Wei, XING Hongyan, HOU Tianhao. Abnormal Traffic Detection Method Based on Traffic Spatial-temporal Features and Adaptive Weighting Coefficients[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230825

基于网络流量时空特征和自适应加权系数的异常流量检测方法

doi: 10.11999/JEIT230825
基金项目: 国家自然科学基金(62171228),国家重点研发计划 (2021YFE0105500)
详细信息
    作者简介:

    顾伟:男,博士生,研究方向为网络流量异常检测、恶意软件检测等

    行鸿彦:男,教授,研究方向为微弱信号检测与处理、物联网技术等

    侯天浩:男,博士生,研究方向为网络安全、传感器网络等

    通讯作者:

    行鸿彦 xinghy@nuist.edu.cn

  • 中图分类号: TN915.08;TP393.08

Abnormal Traffic Detection Method Based on Traffic Spatial-temporal Features and Adaptive Weighting Coefficients

Funds: The National Natural Science Foundation of China (62171228), The National Key R&D Program of China (2021YFE0105500)
  • 摘要: 针对传统异常流量检测模型对流量数据时空特性利用率较低从而导致检测模型性能较差的问题,该文提出一种基于融合卷积神经网络(CNN)、多头挤压激励机制(MSE)和双向长短期记忆(BiLSTM)网络的异常流量检测方法MSECNN-BiLSTM。利用1维CNN挖掘空间尺度下的异常流量特征,并引入MSE,多角度自适应特征加权,强化模型全局特征的关联能力。将网络流量的特征输入BiLSTM,捕捉流量数据的时序依赖性,进一步建立网络流量在时间尺度上的关系模型。利用softmax分类器进行预测分类,实验结果验证了所提模型在异常流量检测领域的有效性。
  • 图  1  MSE框架结构

    图  2  LSTM网络结构

    图  3  基于MSECNN-BiLSTM的异常流量检测框架

    图  4  MSECNN-BiLSTM网络结构

    表  1  超参数设置

    超参数参数值
    OptimizerAdam
    Batch size128
    Training epoch100
    Learning rate0.001
    下载: 导出CSV

    表  2  采用 MSECNN-BiLSTM 及其单一组成部分在 NSL-KDD 上的实验结果(%)

    方法AccuracyPrecisionRecallF1-scoreMCC
    MSECNN85.3186.6387.7387.1869.99
    BiLSTM80.9590.5874.2581.6163.57
    MSECNN-BiLSTM88.7489.9090.3690.1377.02
    下载: 导出CSV

    表  3  MSE 模块对实验结果的影响(%)

    方法AccuracyPrecisionRecallF1-scoreMCC
    CNN80.4297.0767.6579.7365.75
    SECNN83.5996.0074.2783.7570.04
    MSECNN85.3186.6387.7387.1869.99
    SECNN-BiLSTM85.9088.5286.4387.4771.39
    MSECNN-BiLSTM88.7489.9090.3690.1377.02
    下载: 导出CSV

    表  4  MSECNN-BiLSTM 与现有网络结构的实验对比(%)

    方法AccuracyPrecisionRecallF1-scoreMCC
    KNN76.9692.3764.8976.2358.43
    DT78.9891.9469.1378.9261.17
    SVM75.3891.6362.4674.2855.81
    ResNet81.7896.8670.2781.4567.65
    MSECNN-BiLSTM88.7489.9090.3690.1377.02
    下载: 导出CSV

    表  5  与现有异常流量检测模型进行对比(%)

    方法AccuracyPrecisionRecallF1-score
    TSODE77.3883.6477.3877.08
    CNN-CapSA77.2183.5977.2176.89
    LCVAE85.5197.6168.9080.78
    MSECNN-BiLSTM88.7489.9090.3690.13
    下载: 导出CSV
  • [1] IMRANA Y, XIANG YANPING, ALI L, et al. A bidirectional lstm deep learning approach for intrusion detection[J]. Expert Systems with Applications, 2021, 185: 115524. doi: 10.1016/j.eswa.2021.115524
    [2] Kasperky. 安全报告[EB/OL]. https://www.kaspersky.com.cn/about/press-releases/2023_phishing, 2023.
    [3] IKRAM S T and CHERUKURI A K. Improving accuracy of intrusion detection model using PCA and optimized SVM[J]. Journal of Computing and Information Technology, 2016, 24(2): 133–148. doi: 10.20532/cit.2016.1002701
    [4] WANG Huiwen, GU Jie, WANG Shanshan, et al. An effective intrusion detection framework based on SVM with feature augmentation[J]. Knowledge-Based Systems, 2017, 136: 130–139. doi: 10.1016/j.knosys.2017.09.014
    [5] 潘成胜, 李志祥, 杨雯升, 等. 基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法[J]. 电子与信息学报, 2023, 45(12): 4539–4547. doi: 10.11999/JEIT221296

    PAN Chengsheng, LI Zhixiang, YANG Wensheng, et al. Anomaly detection method of network traffic based on secondary feature extraction and BiLSTM-attention[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4539–4547. doi: 10.11999/JEIT221296
    [6] LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [7] LI Yanmiao, XU Yingying, LIU Zhi, et al. Robust detection for network intrusion of industrial IoT based on multi-CNN fusion[J]. Measurement, 2020, 154: 107450. doi: 10.1016/j.measurement.2019.107450
    [8] 陈思佳, 罗志增. 基于长短时记忆和卷积神经网络的手势肌电识别研究[J]. 仪器仪表学报, 2021, 42(2): 162–170.

    CHEN Sijia and LUO Zhizeng. Research on gesture EMG recognition based on long short-term memory and convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 162–170. doi: 10.19650/j.cnki.cjsi.J2007103.
    [9] KANNA P R and SANTHI P. Unified deep learning approach for efficient intrusion detection system using integrated spatial–temporal features[J]. Knowledge-Based Systems, 2021, 226: 107132. doi: 10.1016/j.knosys.2021.107132
    [10] JIANG Feng, FU Yunsheng, GUPTA B B, et al. Deep learning based multi-channel intelligent attack detection for data security[J]. IEEE transactions on Sustainable Computing, 2020, 5(2): 204–212. doi: 10.1109/TSUSC.2018.2793284
    [11] SIVAMOHAN S, SRIDHAR S S, and KRISHNAVENI S. An effective recurrent neural network (RNN) based intrusion detection via bi-directional long short-term memory[C]. 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 2021: 1–5.
    [12] HUANG Buliao, ZHU Yunhui, USMAN M, et al. Graph neural networks for missing value classification in a task-driven metric space[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8073–8084. doi: 10.1109/TKDE.2022.3198689
    [13] HAO Yi, LI Jie, WANG Nanan, et al. Spatiotemporal consistency-enhanced network for video anomaly detection[J]. Pattern Recognition, 2022, 121: 108232. doi: 10.1016/j.patcog.2021.108232
    [14] XU Lixiang, ZHOU Biao, LI Xinlu, et al. Gaussian process image classification based on multi-layer convolution kernel function[J]. Neurocomputing, 2022, 480: 99–109. doi: 10.1016/j.neucom.2022.01.048
    [15] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
    [16] HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [17] GEETHA T V and DEEPA A J. A FKPCA-GWO WDBiLSTM classifier for intrusion detection system in cloud environments[J]. Knowledge-Based Systems, 2022, 253: 109557. doi: 10.1016/j.knosys.2022.109557
    [18] TAVALLAEE M, BAGHERI E, LU Wei, et al. A detailed analysis of the KDD CUP 99 data set[C]. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, Canada, 2009: 1–6.
    [19] FATANI A, ABD ELAZIZ M, DAHOU A, et al. IoT intrusion detection system using deep learning and enhanced transient search optimization[J]. IEEE Access, 2021, 9: 123448–123464. doi: 10.1109/ACCESS.2021.3109081
    [20] ABD ELAZIZ M, AL-QANESS M A A, DAHOU A, et al. Intrusion detection approach for cloud and IoT environments using deep learning and Capuchin Search Algorithm[J]. Advances in Engineering Software, 2023, 176: 103402. doi: 10.1016/j.advengsoft.2022.103402
    [21] XU Xing, LI Jie, YANG Yang, et al. Toward effective intrusion detection using log-cosh conditional variational autoencoder[J]. IEEE Internet of Things Journal, 2021, 8(8): 6187–6196. doi: 10.1109/JIOT.2020.3034621
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  52
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2024-01-15
  • 网络出版日期:  2024-01-19

目录

    /

    返回文章
    返回