高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反向散射NOMA赋能的混合多播-单播协作传输方案

阔永红 薛彦文 吕璐 贺冰涛 陈健

阔永红, 薛彦文, 吕璐, 贺冰涛, 陈健. 反向散射NOMA赋能的混合多播-单播协作传输方案[J]. 电子与信息学报. doi: 10.11999/JEIT230672
引用本文: 阔永红, 薛彦文, 吕璐, 贺冰涛, 陈健. 反向散射NOMA赋能的混合多播-单播协作传输方案[J]. 电子与信息学报. doi: 10.11999/JEIT230672
KUO Yonghong, XUE Yanwen, LÜ Lu, HE Bingtao, CHEN Jian. Backscatter-NOMA Enabled Hybrid Multicast-Unicast Cooperative Transmission Scheme[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230672
Citation: KUO Yonghong, XUE Yanwen, LÜ Lu, HE Bingtao, CHEN Jian. Backscatter-NOMA Enabled Hybrid Multicast-Unicast Cooperative Transmission Scheme[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230672

反向散射NOMA赋能的混合多播-单播协作传输方案

doi: 10.11999/JEIT230672
基金项目: 国家自然科学基金(62271368, 61971320, 62201421),中国博士后科学基金(BX20190264, 2019M650258),陕西省重点研发计划项目(2023-YBGY-041),陕西省自然科学基础研究计划(2021JQ-206),广东省基础与应用基础研究基金(2020A1515110084)
详细信息
    作者简介:

    阔永红:女,教授,研究方向为无线通信与信号处理

    薛彦文:男,硕士生,研究方向为协作非正交多址接入、反向散射通信

    吕璐:男,副教授,研究方向为物理层安全、隐蔽通信等

    贺冰涛:男,讲师,研究方向为非正交多址接入、协作通信等

    陈健:男,教授,研究方向为无线网络虚拟化、非正交多址接入

    通讯作者:

    贺冰涛 bthe@xidian.edu.cn

  • 中图分类号: TN92

Backscatter-NOMA Enabled Hybrid Multicast-Unicast Cooperative Transmission Scheme

Funds: The National Natural Science Foundation of China (62271386, 61971320, 62201421), China Postdoctoral Science Foundation Project (BX20190264, 2019M650258), The Key R&D Program Project of Shaanxi Province (2023-YBGY-041), The Natural Science Basic Research Plan of Shaanxi Province (2021JQ-206), Guangdong Basic and Applied Basic Research Foundation (2020A1515110084)
  • 摘要: 针对协作中继通信系统频谱效率低和链路利用率低的问题,面向多播、单播业务共存场景,该文提出一种反向散射NOMA赋能的混合多播-单播协作传输方案。机会式选择一个多播用户作为协作节点,将其接收信号的一部分功率用于自身解码,剩余功率反向散射以增强其余用户的接收质量。为提升系统性能,通过联合优化基站功率分配系数、协作用户反向散射系数和协作节点选择变量,在保障多播服务质量的前提下,实现单播用户最小可达速率的最大化。为解决上述高度非凸联合优化问题,该文设计了一种协作用户选择准则并提出了一种迭代算法来获取原问题的最优解。仿真结果验证了所提迭代算法的快速收敛性,相较于传统非协作传输方案,所提方案可将单播用户最小可达速率提升11.5%,有效保证多业务服务质量。
  • 图  1  BS-NOMA协作传输系统

    图  2  算法收敛性分析

    图  3  多播用户不同服务质量需求下的性能比较

    图  4  不同用户数量的性能比较

    图  5  不同传输方案的性能比较

    图  6  不同资源分配方案的性能比较

    图  7  不同协作用户选择方案性能对比

    1  基于连续凸近似的优化算法

     1. 初始化:给定$n = {\text{1}}$, $\Delta = 1$, ${{\varGamma }}_1^{\left( 0 \right)} = {{\varGamma }}_2^{\left( 0 \right)} = \cdots = {{\varGamma }}_N^{\left( 0 \right)} = 10$,
     ${\text{v}}_1^{\left( 0 \right)} = {\text{v}}_2^{\left( 0 \right)} = \cdots = {\text{v}}_N^{\left( 0 \right)} = 1.2$, $\lambda _1^{\left( 0 \right)} = \lambda _2^{\left( 0 \right)} = \cdots = \lambda _N^{\left( 0 \right)} = 1.5$,
     $\tau = 0.001$, ${R^{{\text{(0)}}}} = 0$。
     2. while $\Delta > \tau $ do
     3. 求解问题P2,得到${R^{{\text{(}}n{\text{)}}}}$, ${{\varGamma }}_1^{\left( n \right)},{{\varGamma }}_2^{\left( n \right)} \cdots {{\varGamma }}_N^{\left( n \right)}$和
     ${\text{v}}_1^{\left( n \right)},{\text{v}}_1^{\left( n \right)}, \cdots ,{\text{v}}_N^{\left( n \right)}$;
     4. $n \leftarrow n + 1$;
     5. 更新$\Delta = \left| {{R^{{\text{(}}n{\text{)}}}} - {R^{{\text{(}}n - 1{\text{)}}}}} \right|$;
     6. 根据式3-34更新$\lambda _1^{\left( n \right)},\lambda _2^{\left( n \right)}, \cdots ,\lambda _N^{\left( n \right)}$;
     7. end
     8. 输出:最优速率${R^*}$。
    下载: 导出CSV
  • [1] YANG Long, JIANG Hai, YE Qiang, et al. On the application of cooperative NOMA to spatially random wireless caching networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 12055–12071. doi: 10.1109/TVT.2021.3115128.
    [2] MIANDOAB F T, FAZEL M S, and MAHDAVI M. Outage analysis of multiuser MIMO-NOMA transmissions in uplink full-duplex cooperative system[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2076–2079. doi: 10.1109/LWC.2022.3193489.
    [3] SALEM A and MUSAVIAN L. NOMA in cooperative communication systems with energy-harvesting nodes and wireless secure transmission[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1023–1037. doi: 10.1109/TWC.2020.3030133.
    [4] KIM J B and LEE I H. Non-orthogonal multiple access in coordinated direct and relay transmission[J]. IEEE Communications Letters, 2015, 19(11): 2037–2040. doi: 10.1109/LCOMM.2015.2474856.
    [5] LV Lu, CHEN Jian, NI Qiang, et al. Cognitive non-orthogonal multiple access with cooperative relaying: A new wireless frontier for 5G spectrum sharing[J]. IEEE Communications Magazine, 2018, 56(4): 188–195. doi: 10.1109/MCOM.2018.1700687.
    [6] DING Zhiguo, PENG Mugen, and POOR H V. Cooperative non-orthogonal multiple access in 5G systems[J]. IEEE Communications Letters, 2015, 19(8): 1462–1465. doi: 10.1109/LCOMM.2015.2441064.
    [7] DING Zhiguo, DAI Huaiyu, and POOR H V. Relay selection for cooperative NOMA[J]. IEEE Wireless Communications Letters, 2016, 5(4): 416–419. doi: 10.1109/LWC.2016.2574709.
    [8] DING Zhiguo, ZHAO Zhongyuan, PENG Mugen, et al. On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming[J]. IEEE Transactions on Communications, 2017, 65(7): 3151–3163. doi: 10.1109/TCOMM.2017.2696527.
    [9] LV Lu, CHEN Jian, NI Qiang, et al. Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems: User scheduling and performance analysis[J]. IEEE Transactions on Communications, 2017, 65(6): 2641–2656. doi: 10.1109/TCOMM.2017.2677942.
    [10] YANG Long, CHEN Jian, NI Qiang, et al. NOMA-enabled cooperative unicast–multicast: Design and outage analysis[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 7870–7889. doi: 10.1109/TWC.2017.2754261.
    [11] DO T N, DA COSTA D B, DUONG T Q, et al. Improving the performance of cell-edge users in NOMA systems using cooperative relaying[J]. IEEE Transactions on Communications, 2018, 66(5): 1883–1901. doi: 10.1109/TCOMM.2018.2796611.
    [12] ZHANG Zhongshan, CHAI Xiaomeng, LONG Keping, et al. Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection[J]. IEEE Communications Magazine, 2015, 53(5): 128–137. doi: 10.1109/MCOM.2015.7105651.
    [13] ZHONG Caijun and ZHANG Zhaoyang. Non-orthogonal multiple access with cooperative full-duplex relaying[J]. IEEE Communications Letters, 2016, 20(12): 2478–2481. doi: 10.1109/LCOMM.2016.2611500.
    [14] ASIF M, IHSAN A, KHAN W U, et al. Energy-efficient backscatter-assisted coded cooperative NOMA for B5G wireless communications[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 70–83. doi: 10.1109/TGCN.2022.3216209.
    [15] ASIF M, IHSAN A, KHAN W U, et al. Energy-efficient beamforming and resource optimization for AmBSC-assisted cooperative NOMA IoT networks[J]. IEEE Internet of Things Journal, 2023, 10(14): 12434–12448. doi: 10.1109/JIOT.2023.3247021.
    [16] LI Suyue, BARIAH L, MUHAIDAT S, et al. Outage analysis of NOMA-enabled backscatter communications with intelligent reflecting surfaces[J]. IEEE Internet of Things Journal, 2022, 9(16): 15390–15400. doi: 10.1109/JIOT.2022.3150418.
    [17] 叶迎晖, 施丽琴, 卢光跃. 反向散射辅助的无线供能通信网络中用户能效公平性研究[J]. 通信学报, 2020, 41(7): 84–94. doi: 10.11959/j.issn.1000-436x.2020133.

    YE Yinghui, SHI Liqin, and LU Guangyue. User-centric energy efficiency fairness in backscatter-assisted wireless powered communication network[J]. Journal on Communications, 2020, 41(7): 84–94. doi: 10.11959/j.issn.1000-436x.2020133.
    [18] 施丽琴, 叶迎晖, 卢光跃. 无线供能边缘计算网络中系统计算能效最大化资源分配方案[J]. 通信学报, 2020, 41(10): 59–69. doi: 10.11959/j.issn.1000-436x.2020182.

    SHI Liqin, YE Yinghui, and LU Guangyue. Computation energy efficiency maximization based resource allocation scheme in wireless powered mobile edge computing network[J]. Journal on Communications, 2020, 41(10): 59–69. doi: 10.11959/j.issn.1000-436x.2020182.
    [19] 徐勇军, 杨浩克, 李国军, 等. 多标签无线供电反向散射通信网络能效优化算法[J]. 电子与信息学报, 2022, 44(10): 3492–3498. doi: 10.11999/JEIT210772.

    XU Yongjun, YANG Haoke, LI Guojun, et al. Energy-efficient optimization algorithm in multi-tag wireless-powered backscatter communication networks[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3492–3498. doi: 10.11999/JEIT210772.
    [20] CHEN Weiyu, DING Haiyang, WANG Shilian, et al. Backscatter cooperation in NOMA communications systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(6): 3458–3474. doi: 10.1109/TWC.2021.3050600.
    [21] ZHANG Wei, CHEN Jian, KUO Yonghong, et al. Artificial-noise-aided optimal beamforming in layered physical layer security[J]. IEEE Communications Letters, 2019, 23(1): 72–75. doi: 10.1109/LCOMM.2018.2881182.
    [22] BECK A, BEN-TAL A, and TETRUASHVILI L. A sequential parametric convex approximation method with applications to nonconvex truss topology design problems[J]. Journal of Global Optimization, 2010, 47(1): 29–51. doi: 10.1007/s10898-009-9456-5.
    [23] HUANG Ronglan, WAN Dehuan, JI Fei, et al. Performance analysis of NOMA-based cooperative networks with relay selection[J]. China Communications, 2020, 17(11): 111–119. doi: 10.23919/JCC.2020.11.010.
    [24] LV Lu, CHEN Jian, and NI Qiang. Cooperative non-orthogonal multiple access in cognitive radio[J]. IEEE Communications Letters, 2016, 20(10): 2059–2062. doi: 10.1109/LCOMM.2016.2596763.
    [25] HU Yang, ZHANG Xuedan, and DONG Yuhan. A novel sub-domain cooperative scheme in random relay selection wireless networks[C]. 2013 47th Annual Conference on Information Sciences and Systems, Baltimore, USA, 2013: 1–6. doi: 10.1109/CISS.2013.6552301.
    [26] MANGLAYEV T, KIZILIRMAK R C, and KHO Y H. Optimum power allocation for non-orthogonal multiple access (NOMA)[C]. The IEEE 10th International Conference on Application of Information and Communication Technologies, Baku, Azerbaijan, 2016: 1–4. doi: 10.1109/ICAICT.2016.7991730.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  22
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-07
  • 修回日期:  2024-03-25
  • 网络出版日期:  2024-04-08

目录

    /

    返回文章
    返回