高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

欠采样下的多频带通信信号高精度载频估计

黄翔东 宋金水 李燕平

黄翔东, 宋金水, 李燕平. 欠采样下的多频带通信信号高精度载频估计[J]. 电子与信息学报, 2024, 46(3): 906-913. doi: 10.11999/JEIT230297
引用本文: 黄翔东, 宋金水, 李燕平. 欠采样下的多频带通信信号高精度载频估计[J]. 电子与信息学报, 2024, 46(3): 906-913. doi: 10.11999/JEIT230297
HUANG Xiangdong, SONG Jinshui, LI Yanping. High Accuracy Carrier Frequency Estimation of Multi-band Communication Signals Based on Undersampling[J]. Journal of Electronics & Information Technology, 2024, 46(3): 906-913. doi: 10.11999/JEIT230297
Citation: HUANG Xiangdong, SONG Jinshui, LI Yanping. High Accuracy Carrier Frequency Estimation of Multi-band Communication Signals Based on Undersampling[J]. Journal of Electronics & Information Technology, 2024, 46(3): 906-913. doi: 10.11999/JEIT230297

欠采样下的多频带通信信号高精度载频估计

doi: 10.11999/JEIT230297
基金项目: 青海省基础研究计划面上项目(2021-ZJ-910)
详细信息
    作者简介:

    黄翔东:男,教授,研究方向为数字信号处理

    宋金水:男,硕士生,研究方向为欠采样谱分析

    李燕平:男,博士生,研究方向为基于互素谱分析的电磁信号处理

    通讯作者:

    黄翔东 xdhuang@tju.edu.cn

  • 中图分类号: TN911.7

High Accuracy Carrier Frequency Estimation of Multi-band Communication Signals Based on Undersampling

Funds: General Program of Foundation Research Plan of Qinghai Province, China (2021-ZJ-910)
  • 摘要: 为根本解决当前主流的基于调制宽带转化器(MWC )的欠采样频率估计方法存在的3个问题,即采样通道数目多、载频估计精度低、信源频带分布稀疏度条件高,该文提出基于互素谱相位差校正的通信信号载频估计方法。通过将两路互素欠采样取代多路调制宽带转化器欠采样,克服了其耗费欠采样通道数目多的缺陷;基于此,既推导出全景谱谱峰位置与两路互素输出IDFT支路序号对的映射关系,又推导出相邻快拍下该序号对的IDFT相位差与载频值的解析关系,从而克服了主流方法的载频估计精度低的缺陷;通过将最小尺寸全相位滤波器对半分解方法融入原型滤波器设计,构造出两路并行互素谱分析器,还彻底克服了对信源频带分布稀疏度条件高的依赖。仿真表明,相比于主流方法,该文方法仅需耗费不足其1/2的样本数量,载频估计的相对误差降至其1/20以下。
  • 图  1  经典互素谱分析流程图

    图  2  两路并行互素谱分析器

    图  3  经典互素谱分析、两路并行互素谱分析的全景谱

    图  4  两路并行互素谱分析的全景谱

    图  5  本文方法载频估计的相对误差曲线

    图  6  两种载频估计方法的相对误差曲线

    1  多频带通信信号载频估计流程

    初始化 给定谱分析检测上限$ {F_N} $,设定互素整数对$ M,\;N $,依据式(17)设计两路并行互素谱分析器的原型滤波器;确定欠采样速率$ {F_{{{\mathrm{S}}}1}} = {{{F_{N}}} \mathord{\left/ {\vphantom {{{F_{N}}} N}} \right. } N} $, $ {F_{\rm{S}2}} = {{{F_{N}}} \mathord{\left/ {\vphantom {{{F_{N}}} M}} \right. } M} $,给定持续L+1个快拍时段的互素欠采样样本$ {x_1}(n) = x(Nn) $, $ {x_2}(n) = x(Mn) $;
    步骤1 将$ {x_1}(n) $, $ {x_2}(n) $馈入两路并行互素谱分析器,获得全景谱,扫描其$[0,{F_{N}}/2)$范围内的所有谱峰;
    步骤2 对于每个谱峰,依据式(18)的频点集合$ {\varGamma _1} $和$ {\varGamma _2} $,确定其所隶属的互素谱分析器以及所对应的谱序号i,将i代入式可得余数对k, l
    步骤3 在该互素谱分析器内,依据式(22)–式(24)分别计算上、下通道中第k路、第l路IDFT输出的L个相邻快拍相位差$ {\widehat{\delta }}_{v,k},{\widehat{\delta }}_{v,l},v=1,2,\cdots,L $,将其代入式(25)算出高精度的频偏估计值$ \hat \delta $;
    步骤4 将谱序号i, $ \hat \delta $代入式可得该谱峰的估计值$ {\hat f_i} $;
    步骤5 重复步骤 2~4,直至全景谱$[0,{F_{N}}/2)$范围内的全部谱峰估计完毕。
    下载: 导出CSV
  • [1] ALI A and HAMOUDA W. Advances on spectrum sensing for cognitive radio networks: Theory and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1277–1304. doi: 10.1109/COMST.2016.2631080.
    [2] ARJOUNE Y and KAABOUCH N. A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions[J]. Sensors, 2019, 19(1): 126. doi: 10.3390/s19010126.
    [3] ZHANG Ling, WEI Zhiqing, WANG Lin, et al. Spectrum sharing in the sky and space: A survey[J]. Sensors, 2023, 23(1): 342. doi: 10.3390/s23010342.
    [4] LI Xiaowei, LIANG Hong, and XIA Xianggen. A robust Chinese remainder theorem with its applications in frequency estimation from undersampled waveforms[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4314–4322. doi: 10.1109/TSP.2009.2025079.
    [5] WANG Wenjie and XIA Xianggen. A closed-form robust Chinese remainder theorem and its performance analysis[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5655–5666. doi: 10.1109/TSP.2010.2066974.
    [6] LIU Shang, WANG Lulu, LIN Weibin, et al. Digital instantaneous frequency measurement with wide bandwidth for real-valued waveforms using multiple sub-Nyquist channels[J]. Measurement Science and Technology, 2023, 34(2): 025101. doi: 10.1088/1361-6501/ac97b.
    [7] SU Yu and JIANG Defu. Digital instantaneous frequency measurement of a real sinusoid based on three sub-Nyquist sampling channels[J]. Mathematical Problems in Engineering, 2020, 2020: 5089761. doi: 10.1155/2020/5089761.
    [8] MISHALI M and ELDAR Y C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375–391. doi: 10.1109/JSTSP.2010.2042414.
    [9] 郑仕链, 杨小牛. 用于调制宽带转换器压缩频谱感知的重构失败判定方法[J]. 电子与信息学报, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127.

    ZHENG Shilian and YANG Xiaoniu. A reconstruction failure detection scheme for modulated wideband converter based compressed spectrum sensing[J]. Journal of Electronics & Information Technology, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127.
    [10] HE Jiai, CHEN Wei, JIA Lu, et al. An effective reconstruction algorithm based on modulated wideband converter for wideband spectrum sensing[J]. IEEE Access, 2020, 8: 152239–152247. doi: 10.1109/ACCESS.2020.3017729.
    [11] JIANG Siyi, FU Ning, WEI Zhiliang, et al. Joint spectrum, carrier, and DOA estimation with beamforming MWC sampling system[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 8001415. doi: 10.1109/TIM.2022.3147893.
    [12] SOBHANI G, PEZESHK A M, BEHNIA F, et al. Joint detection of carrier frequency and direction of arrival of wide-band signals using sub-Nyquist sampling and interferometric direction finding[J]. AEU-International Journal of Electronics and Communications, 2021, 139: 153926. doi: 10.1016/j.aeue.2021.153926.
    [13] 张展, 魏平, 高林, 等. 以欠采样速率实现盲谱感知及二维DOA估计[J]. 电子科技大学学报, 2022, 51(3): 357–362.

    ZHANG Zhan, WEI Ping, GAO Lin, et al. Achieving blind spectrum sensing and two-dimensional DOA estimation with sub-Nyquist sampling rate[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(3): 357–362.
    [14] VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682.
    [15] HUANG Xiangdong, HAN Yiwen, YAN Ziyang, et al. Resolution doubled Co-prime spectral analyzers for removing spurious peaks[J]. IEEE Transactions on Signal Processing, 2016, 64(10): 2489–2498. doi: 10.1109/TSP.2016.2526964.
    [16] 黄翔东, 单宇轩, 王健. 基于并行全相位点通滤波的高性能互素谱分析方法[J]. 电子与信息学报, 2020, 42(3): 613–620. doi: 10.11999/JEIT190317.

    HUANG Xiangdong, SHAN Yuxuan, and WANG Jian. High-performance co-prime spectral analysis method based on parallelled all-phase point-pass filtering[J]. Journal of Electronics & Information Technology , 2020, 42(3): 613–620. doi: 10.11999/JEIT190317.
    [17] 黄翔东, 韩溢文, 闫子阳, 等. 基于全相位滤波的互素谱分析的高效设计[J]. 系统工程与电子技术, 2017, 39(1): 27–33. doi: 10.3969/j.issn.1001-506X.2017.01.05.

    HUANG Xiangdong, HAN Yiwen, YAN Ziyang, et al. Efficient design of co-prime spectral analysis based on all-phase filtering[J]. Systems Engineering and Electronics, 2017, 39(1): 27–33. doi: 10.3969/j.issn.1001-506X.2017.01.05.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  30
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2024-01-24
  • 网络出版日期:  2024-02-07
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回