高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于大规模可重构智能表面的近远场混合信道模型

罗文宇 马怡乐 邵霞 许丽 南希茜

罗文宇, 马怡乐, 邵霞, 许丽, 南希茜. 基于大规模可重构智能表面的近远场混合信道模型[J]. 电子与信息学报, 2022, 44(11): 3866-3873. doi: 10.11999/JEIT220663
引用本文: 罗文宇, 马怡乐, 邵霞, 许丽, 南希茜. 基于大规模可重构智能表面的近远场混合信道模型[J]. 电子与信息学报, 2022, 44(11): 3866-3873. doi: 10.11999/JEIT220663
LUO Wenyu, MA Yile, SHAO Xia, XU Li, NAN Xixi. Near-far Field Hybrid Channel Model Based on Massive Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3866-3873. doi: 10.11999/JEIT220663
Citation: LUO Wenyu, MA Yile, SHAO Xia, XU Li, NAN Xixi. Near-far Field Hybrid Channel Model Based on Massive Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3866-3873. doi: 10.11999/JEIT220663

基于大规模可重构智能表面的近远场混合信道模型

doi: 10.11999/JEIT220663
基金项目: 国家自然科学基金(U1804148)
详细信息
    作者简介:

    罗文宇:男,副教授,研究方向为可重构智能表面技术、智能无线环境

    马怡乐:男,硕士生,研究方向为可重构智能表面技术

    邵霞:女,副教授,研究方向为通信与信息安全

    许丽:女,教授,研究方向为计算机视觉、模式识别、机器学习等

    南希茜:女,学士,研究方向为可重构智能表面技术

    通讯作者:

    邵霞 shaoxia_hs@163.com

  • 中图分类号: TN921

Near-far Field Hybrid Channel Model Based on Massive Reconfigurable Intelligent Surface

Funds: The National Natural Science Foundation of China (U1804148)
  • 摘要: 近来,可重构智能表面(RIS)作为一种全新的革命性技术引起了学术界和工业界的广泛关注。随着通信频率的提高以及RIS孔径的增大,RIS辅助无线通信的工作条件逐渐靠近天线的近场辐射模式,而非仅仅存在传统意义中的远场辐射。单独考虑远场或者近场的信道模型均无法准确刻画RIS辅助无线通信的传输特性,造成性能损失。针对此问题,该文梳理了大规模RIS辅助通信近场和远场信道模型,通过引入权重因子,构建了大规模RIS辅助无线通信场景下近远场混合信道模型。在此基础上,推导了近远场混合信道模型下系统的增益与损耗,并进行鲁棒性分析,仿真结果表明该混合模型带来的系统增益与模型鲁棒性均显著提升。
  • 图  1  大规模RIS辅助的近场用户通信模型

    图  2  近场用户的混合波束接收示意图

    图  3  不同模型下的大规模RIS归一化增益与传输距离关系

    图  4  不同单元数目下的大规模RIS可达速率与发射功率关系

    图  5  不同信噪比条件下所提混合模型的可靠性分析

    表  1  仿真参数配置

    参数数值
    波长$ \lambda $0.1 m
    元素间距$ d $0.05 m
    发射天线增益$ {G_t} $30 dB
    接收天线增益$ {G_r} $15 dB
    噪声功率$ {\sigma ^2} $–70 dB
    信噪比阈值$ {\gamma _t} $60 dB
    下载: 导出CSV
  • [1] BJORNSON E, VAN DER PERRE L, BUZZI S, et al. Massive MIMO in Sub-6 GHz and mmWave: Physical, practical, and use-case differences[J]. IEEE Wireless Communications, 2019, 26(2): 100–108. doi: 10.1109/MWC.2018.1800140
    [2] NEMATI M, MAHAM B, POKHREL S R, et al. Modeling RIS empowered outdoor-to-indoor communication in mmWave cellular networks[J]. IEEE Transactions on Communications, 2021, 69(11): 7837–7850. doi: 10.1109/TCOMM.2021.3104878
    [3] TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055
    [4] YING Keke, GAO Zhen, LYU Shanxiang, et al. GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO[J]. IEEE Access, 2020, 8: 19530–19539. doi: 10.1109/ACCESS.2020.2968456
    [5] YAN Wenjing, YUAN Xiaojun, HE Zhenqing, et al. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1793–1808. doi: 10.1109/JSAC.2020.3000811
    [6] BJÖRNSON E, DEMIR Ö T, and SANGUINETTI L. A primer on near-field beamforming for arrays and reconfigurable intelligent surfaces[C]. 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2021: 105–112.
    [7] BJÖRNSON E and SANGUINETTI L. Power scaling laws and near-field behaviors of massive MIMO and intelligent reflecting surfaces[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1306–1324. doi: 10.1109/OJCOMS.2020.3020925
    [8] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887
    [9] CHEN Yuhang, YAN Longfei, and HAN Chong. Hybrid spherical- and planar-wave modeling and DCNN-powered estimation of terahertz ultra-massive MIMO channels[J]. IEEE Transactions on Communications, 2021, 69(10): 7063–7076. doi: 10.1109/TCOMM.2021.3098696
    [10] WEI Xiuhong, DAI Linglong, ZHAO Yajun, et al. Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?[J]. China Communications, 2022, 19(6): 193–204. doi: 10.23919/JCC.2022.06.015
    [11] HAN Yu, JIN Shi, WEN Chaokai, et al. Channel estimation for extremely large-scale massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(5): 633–637. doi: 10.1109/LWC.2019.2963877
    [12] CUI Mingyao and DAI Linglong. Channel estimation for extremely large-scale MIMO: Far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663–2677. doi: 10.1109/TCOMM.2022.3146400
    [13] WEI Xiuhong and DAI Linglong. Channel estimation for extremely large-scale massive MIMO: Far-field, near-field, or hybrid-field?[J]. IEEE Communications Letters, 2022, 26(1): 177–181. doi: 10.1109/LCOMM.2021.3124927
    [14] JIANG Yuhua, GAO Feifei, JIAN Mengnan, et al. Reconfigurable intelligent surface for near field communications: Beamforming and sensing[EB/OL]. https://doi.org/10.48550/arXiv.2204.10114, 2022.
    [15] GUERRA A, GUIDI F, DARDARI D, et al. Near-field tracking with large antenna arrays: Fundamental limits and practical algorithms[J]. IEEE Transactions on Signal Processing, 2021, 69: 5723–5738. doi: 10.1109/TSP.2021.3101696
    [16] ABU-SHABAN Z, KEYKHOSRAVI K, KESKIN M F, et al. Near-field localization with a reconfigurable intelligent surface acting as lens[C]. ICC 2021-IEEE International Conference on Communications, Montreal, Canada, 2021.
    [17] SHERMAN J. Properties of focused apertures in the Fresnel region[J]. IRE Transactions on Antennas and Propagation, 1962, 10(4): 399–408. doi: 10.1109/TAP.1962.1137900
    [18] BEN CHEIKH D, KELIF J M, COUPECHOUX M, et al. SIR distribution analysis in cellular networks considering the joint impact of path-loss, shadowing and fast fading[J]. EURASIP Journal on Wireless Communications and Networking, 2011, 2011: 137. doi: 10.1186/1687-1499-2011-137
    [19] LI Sai, YANG Linag, DA COSTA D B, et al. On the performance of RIS-assisted dual-hop mixed RF-UWOC systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 340–353. doi: 10.1109/TCCN.2021.3058670
    [20] ANSARI I S, AL-AHMADI S, YILMAZ F, et al. A new formula for the BER of binary modulations with dual-branch selection over generalized-K composite fading channels[J]. IEEE Transactions on Communications, 2011, 59(10): 2654–2658. doi: 10.1109/TCOMM.2011.063011.100303A
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  661
  • HTML全文浏览量:  815
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-08-27
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回