高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于智能超表面的室内覆盖增强技术研究与实验验证

费丹 陈晨 郑鹏 游明博 丁建文 王玮 章嘉懿 艾渤 金石 崔铁军

费丹, 陈晨, 郑鹏, 游明博, 丁建文, 王玮, 章嘉懿, 艾渤, 金石, 崔铁军. 基于智能超表面的室内覆盖增强技术研究与实验验证[J]. 电子与信息学报, 2022, 44(7): 2374-2381. doi: 10.11999/JEIT220068
引用本文: 费丹, 陈晨, 郑鹏, 游明博, 丁建文, 王玮, 章嘉懿, 艾渤, 金石, 崔铁军. 基于智能超表面的室内覆盖增强技术研究与实验验证[J]. 电子与信息学报, 2022, 44(7): 2374-2381. doi: 10.11999/JEIT220068
FEI Dan, CHEN Chen, ZHENG Peng, YOU Mingbo, DING Jianwen, WANG Wei, ZHANG Jiayi, AI Bo, JIN Shi, CUI Tiejun. Research and Experimental Verification of Reconfigurable Intelligent Surface in Indoor Coverage Enhancement[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2374-2381. doi: 10.11999/JEIT220068
Citation: FEI Dan, CHEN Chen, ZHENG Peng, YOU Mingbo, DING Jianwen, WANG Wei, ZHANG Jiayi, AI Bo, JIN Shi, CUI Tiejun. Research and Experimental Verification of Reconfigurable Intelligent Surface in Indoor Coverage Enhancement[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2374-2381. doi: 10.11999/JEIT220068

基于智能超表面的室内覆盖增强技术研究与实验验证

doi: 10.11999/JEIT220068
基金项目: 国家自然科学基金 (62171021), 国防科技工业海洋防务技术创新中心创新基金(2021-40),江苏省前沿引领技术基础研究专项(BK20212002-3),中国国家铁路集团有限公司科技研究开发计划项目(SY2021G001)
详细信息
    作者简介:

    费丹:男,1988年生,实验师,研究方向为无线信道测量、建模及模拟

    陈晨:男,1985年生,博士,研究方向为无线信道测量及模拟

    郑鹏:男,1998年生,硕士生,研究方向为无线信道测量与建模、智能超表面等

    游明博:男,1998年生,硕士生,研究方向为智能超表面

    丁建文:男,1980年生,副研究员,研究方向为轨道交通专用移动通信系统、无线电波传播、智能+轨道交通等

    王玮:男,1982年生,高级工程师,研究方向为轨道交通专用移动通信系统

    章嘉懿:男,1986年生,教授,研究方向为大规模MIMO技术、智能超表面等

    艾渤:男,1974年生,教授,研究方向为宽带移动通信系统与专用移动通信、无线电波传播与信道建模、6G关键技术等

    金石:男,1974年生,教授,研究方向为5G、6G移动通信理论与关键技术、现代信号处理及其在移动通信中应用、智能超表面等

    崔铁军:男,1965年生,教授,研究方向为毫米波通信、智能超表面、计算电磁学和理论电磁学等

    通讯作者:

    陈晨 98940301@bjtu.edu.cn

  • 中图分类号: TN911

Research and Experimental Verification of Reconfigurable Intelligent Surface in Indoor Coverage Enhancement

Funds: The National Natural Science Foundation of China (62171021), The National Defense Technology Industry Marine Defense Technology Innovation Center Innovation Fund (2021-40), The Frontier Leading Technology Basic Research Project of Jiangsu Province (BK20212002-3), The Project of China State Railway Group (SY2021G001)
  • 摘要: 智能超表面(RIS)通过打造可重构主动智能无线环境,打破了无线通信系统中被动电波传播的局限性,为5G-Adv和6G发展创造了新的契机。该文介绍了RIS系统架构与工作原理,包括硬件设计与波束聚合原理等。搭建了RIS辅助的无线通信实验测试系统,通过对比无RIS、随机码本RIS及赋形码本RIS 3种情况下的测试结果,验证了RIS通过反射波束赋形实现覆盖增强的能力。
  • 图  1  RIS面板结构图

    图  2  RIS测试系统示意图

    图  3  RIS 3维坐标系

    图  4  RIS码本以及出射波束的能量图(入射角0°,出射角45°)

    图  5  RIS辅助无线通信系统示意图

    图  6  室内RIS测试场景

    图  7  RIS网络性能分析平台

    图  8  基于RIS室内测试性能对比

    图  9  基于RIS的网络吞吐量仿真测试性能对比

    表  1  RIS相关参数

    参数取值
    可调信号频率范围(GHz)2.515~2.675
    可调俯仰角度范围±60°
    可调方位角度范围±60°
    波束宽度E面:7°,H面:3.5°
    码本更新率(s)0.01
    下载: 导出CSV

    表  2  室内场景实验参数

    参数取值
    信号频率(GHz)2.64
    入射角度30° \ 60°
    出射角度60° \ 30°
    发射端距离(m)6
    接收端距离(m)13.2~18.0
    信号带宽(MHz)40
    俯仰角
    天线增益(dBi)12.5
    功放增益(dBm)35
    下载: 导出CSV
  • [1] ZHANG Jiayi, BJÖRNSON E, MATTHAIOU M, et al. Prospective multiple antenna technologies for beyond 5G[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1637–1660. doi: 10.1109/JSAC.2020.3000826
    [2] AI Bo, MOLISCH A F, RUPP M, et al. 5G key technologies for smart railways[J]. Proceedings of the IEEE, 2020, 108(6): 856–893. doi: 10.1109/JPROC.2020.2988595
    [3] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [4] PANG Xiaowei, SHENG Min, ZHAO Nan, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164–170. doi: 10.1109/MWC.010.2000528
    [5] 胡浪涛, 毕松姣, 刘全金, 等. 基于强化学习的智能超表面辅助无人机通信系统物理层安全算法[J]. 电子与信息学报. 待发表.

    HU Langtao, BI Songjiao, LIU Quanjin, et al. Physical layer security algorithm of reconfigurable intelligent surface -assisted unmanned aerial vehicle communication system based on reinforcement learning[J]. Journal of Electronics & Information Technology. To be published.
    [6] TANG Wankai, CHEN Mingzheng, DAI Junyan, et al. Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design[J]. IEEE Wireless Communications, 2020, 27(2): 180–187. doi: 10.1109/MWC.001.1900308
    [7] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    [8] DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time‐domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044
    [9] TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055
    [10] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887
    [11] WANG Zipeng, TAN Li, YIN Haifan, et al. A received power model for reconfigurable intelligent surface and measurement-based validations[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2021.
    [12] PEI Xilong, YIN Haifan, TAN Li, et al. RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials[J]. IEEE Transactions on Communications, 2021, 69(12): 8627–8640. doi: 10.1109/TCOMM.2021.3116151
    [13] DAI Linglong, WANG Bichai, WANG Min, et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8: 45913–45923. doi: 10.1109/ACCESS.2020.2977772
    [14] 邹翔宇, 黄崇文, 徐勇军, 等. 基于深度学习的通信系统中安全能效的控制[J]. 电子与信息学报, 待发表.

    ZOU Xiangyu, HUANG Chongwen, XU Yongjun, et al. Secure energy efficiency in communication systems based on deep learning[J]. Journal of Electronics & Information Technology. To be published.
    [15] TRICHOPOULOS G C, THEOFANOPOULOS P, KASHYAP B, et al. Design and evaluation of reconfigurable intelligent surfaces in real-world environment[J]. IEEE Open Journal of the Communications Society, 2021, 3: 462–474. doi: 10.1109/OJCOMS.2022.3158310
    [16] DUNNA M, ZHANG Chi, SIEVENPIPER D, et al. ScatterMIMO: Enabling virtual MIMO with smart surfaces[C]. Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, United Kingdom, 2020: 10.
    [17] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [18] 赵亚军, 章嘉懿, 艾渤. 智能超表面技术在智能高铁通信场景的应用探讨[J]. 中兴通讯技术, 2021, 27(4): 36–43. doi: 10.12142/ZTETJ.202104008

    ZHAO Yajun, ZHANG Jiayi, and AI Bo. Applications of reconfigurable intelligent surface in smart high-speed railway communications[J]. ZTE Technology Journal, 2021, 27(4): 36–43. doi: 10.12142/ZTETJ.202104008
    [19] 郭雅婧, 章嘉懿, 鲁照华, 等. 面向移动用户的智能反射表面波束追踪与覆盖增强算法[J]. 中兴通讯技术, 2021, 27(2): 54–59. doi: 10.12142/ZTETJ.202102012

    GUO Jingya, ZHANG Jiayi, LU Zhaohua, et al. Beam tracking and coverage enhancement algorithm for mobile users with intelligent reflecting surface[J]. ZTE Technology Journal, 2021, 27(2): 54–59. doi: 10.12142/ZTETJ.202102012
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1390
  • HTML全文浏览量:  880
  • PDF下载量:  365
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 修回日期:  2022-06-16
  • 录用日期:  2022-06-17
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回