高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向航天器有线无线混合场景的流调度机制研究

赵国锋 卢奕杉 徐川 邢媛 何熊文 崔钊婧

赵国锋, 卢奕杉, 徐川, 邢媛, 何熊文, 崔钊婧. 面向航天器有线无线混合场景的流调度机制研究[J]. 电子与信息学报, 2023, 45(2): 464-471. doi: 10.11999/JEIT211391
引用本文: 赵国锋, 卢奕杉, 徐川, 邢媛, 何熊文, 崔钊婧. 面向航天器有线无线混合场景的流调度机制研究[J]. 电子与信息学报, 2023, 45(2): 464-471. doi: 10.11999/JEIT211391
ZHAO Guofeng, LU Yishan, XU Chuan, XING Yuan, HE Xiongwen, CUI Zhaojing. Research on Flow Scheduling Mechanism for Spacecraft Wired Wireless Hybrid Scenario[J]. Journal of Electronics & Information Technology, 2023, 45(2): 464-471. doi: 10.11999/JEIT211391
Citation: ZHAO Guofeng, LU Yishan, XU Chuan, XING Yuan, HE Xiongwen, CUI Zhaojing. Research on Flow Scheduling Mechanism for Spacecraft Wired Wireless Hybrid Scenario[J]. Journal of Electronics & Information Technology, 2023, 45(2): 464-471. doi: 10.11999/JEIT211391

面向航天器有线无线混合场景的流调度机制研究

doi: 10.11999/JEIT211391
基金项目: 国家自然科学基金(62171070),国家重点研发计划(2018YFB1800301, 2018YFB1800304)
详细信息
    作者简介:

    赵国锋:男,教授,研究方向为工业互联网、天地一体化网络、网络测量

    卢奕杉:男,硕士生,研究方向为时间敏感网络

    徐川:男,教授,研究方向为时间敏感网络、天地一体化网络、工业互联网

    邢媛:女,博士生,研究方向为空间信息网络、时间敏感网络

    何熊文:男,研究员,研究方向为空间数据系统、航天器综合电子系统、星载嵌入式软件等

    崔钊婧:女,助理研究员,研究方向为软件定义网络、时间触发以太网等

    通讯作者:

    徐川 xuchuan@cqupt.edu.cn

  • 中图分类号: TN915; TP393

Research on Flow Scheduling Mechanism for Spacecraft Wired Wireless Hybrid Scenario

Funds: The National Natural Science Foundation of China (62171070), The National Key Research and Development Project of China (2018YFB1800301, 2018YFB1800304)
  • 摘要: 随着各国深空探测任务的开展,空间站的建设需求日益增加,而航天器内部大量的数据通信总线在一定程度上影响了航天器的有效载荷。因此,该文将无线通信方式引入到航天器通信系统设计中,但传统无线通信难以保障时敏数据的端到端传输时延,该文提出了一种有线无线融合的时间敏感网络(TSN)流调度方案。设计了一种上下行时隙分离的TDMA时隙分配机制,通过对航天器内部业务类型与有线无线融合传输链路的时延关系进行建模分析,构建了以时敏业务平均端到端时延最小的目标函数,采用粒子群算法对时隙分配方案进行快速求解。最后在Pycharm平台对所提算法进行对比测试,并在EXata网络仿真平台搭建航天传感器采集网络进行验证。实验结果表明,该文所提出的有线无线融合流调度方案能为时敏业务提供稳定、有界的时延保障。
  • 图  1  航天器确定性通信需求

    图  2  超帧结构设计

    图  3  保护带设置

    图  4  时隙分配算法性能对比

    图  5  有线无线融合的航天器TSN仿真场景

    图  6  有线无线融合流调度性能测试

    算法1 PSO-TSN算法
     Input: 网络设备数$ N $,无线传输速率$ v $,设备业务量大小$ B_n^s $,种
        群数量$ Np $,最大迭代数maxCycle,惯性权重$ w $,TDMA
        时隙起始位置$ {T_{\text{b}}} $,结束位置$ {T_{\text{e}}} $,单位时隙长度$ {T_{\text{p}}} $
     Output: 网络最低时延、时隙最佳位置
     1. for $ i $=1 to$ N $
     2.   for $ j $= 1 to $ Np $
     3.     $ p(i,j) $ = randn($ {T_{\text{b}}} $,$ {T_{\text{e}}} $)//初始化粒子所处位置
     4.     $ v(i,j) $ = $ {T_{\text{p}}} $ //初始化粒子速度
     5.   end for
     6. end for
     7. ${\rm{gBest}}$ = min{${\rm{pBest}}$}
     8. for $ i $ = 1 to$ N $
     9.   while Cycle ≤ maxCycle
     10.     for $ j $ =1 to$ Np $
     11.       update $ p(i) $,$ v(i) $
     12.       if fit($ p(i,j) $) < fit(${\rm{pBest}}(i,j)$)
     13.         ${\rm{pBest}}(i,j)$ = $ p(i,j) $
     14.       if fit(${\rm{pBest}}(i,j)$)<fit(${\rm{gBest}}(i)$)
     15.         ${\rm{gBest}}(i)$ = ${\rm{pBest}}(i,j)$
     16.     end for
     17.   end while
     18. end for
     19. for $ i $ =1 to$ N $
     20.   best_position = F(${\rm{gBest}}(i)$)
     21.   min_delay = F(${\rm{gBest}}(i)$)
     22. end for
    下载: 导出CSV

    表  1  网络场景参数

    参数数值
    有线无线融合网关个数3
    融合网关覆盖节点数5
    融合网关与控制中心有线跳数3
    终端有线跳数1
    下载: 导出CSV

    表  2  仿真业务参数

    业务类型源端目的端周期(ms)业务量(bit)
    压力传感信息终端32终端225500
    终端35终端225500
    温度传感信息终端30终端22100700
    终端3终端18100700
    视频监控信息终端27终端225003000
    终端9终端165003000
    客户端信息终端15终端221000
    终端17终端51000
    下载: 导出CSV
  • [1] RATIU O, PANAGIOTOPOULOS N, VOS S, et al. Wireless transmission of sensor data over UWB in spacecraft payload networks[C]. 2018 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Huntsville, USA, 2018: 131–136.
    [2] 何熊文. 一种航天器综合电子系统业务及协议体系架构设计[J]. 航天器工程, 2017, 26(1): 71–78. doi: 10.3969/j.issn.1673-8748.2017.01.011

    HE Xiongwen. Service and protocol architecture design of spacecraft avionics system[J]. Spacecraft Engineering, 2017, 26(1): 71–78. doi: 10.3969/j.issn.1673-8748.2017.01.011
    [3] KOO C H and KIM H. Measurement of cache-related preemption delay for spacecraft computers[C]. 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Hakodate, Japan, 2018: 234–235.
    [4] KIM M, MIN Junhong, HYEON D, et al. TAS scheduling for real-time forwarding of emergency event traffic in TSN[C]. 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2020: 1111–1113.
    [5] XU Di and YAO Li. Research on scheduling algorithm for industrial Internet of Things[C]. 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Bangkok, Thailand, 2020: 301–305.
    [6] TIAN Zhuang. Research on wireless local area network in large scale manned spacecraft[C]. 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 2020: 35–38.
    [7] DIAB R, CHALHOUB G, and MISSON M. Evaluation of a hybrid multi-channel MAC protocol for periodic and burst traffic[C]. 39th Annual IEEE Conference on Local Computer Networks, Edmonton, Canada, 2014: 454–457.
    [8] SEIJO O, FERNÁNDEZ Z, VAL I, et al. SHARP: Towards the integration of time-sensitive communications in legacy LAN/WLAN[C]. 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018: 1–7.
    [9] WANG Peng, LI Hongyan, ZHANG Shun, et al. A novel joint scheduling scheme of earth observation and transmission in satellite networks[C]. 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, USA, 2020: 774–779.
    [10] LAY N, OKINO C, ARGUETA A, et al. On-board wireless communications for spacecraft test and operations[C]. 2019 IEEE Aerospace Conference, Big Sky, USA, 2019: 1–16.
    [11] SANCHEZ-GARRIDO J, APARICIO B, RAMIREZ J G, et al. Implementation of a time-sensitive networking (TSN) Ethernet bus for microlaunchers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2743–2758. doi: 10.1109/TAES.2021.3061806
    [12] CHAINE P J, BOYER M, PAGETTI C, et al. Comparative study of Ethernet technologies for next-generation satellite on-board networks[C]. 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San Antonio, USA, 2021: 1–10.
    [13] DROBCZYK M and LÜBKEN A. Novel wireless protocol architecture for intra-spacecraft wireless sensor networks (inspaWSN)[C]. 2018 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Huntsville, USA, 2018: 89–94.
    [14] KIM Y, SHIN H, and CHA H. Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor networks[C]. 2008 International Conference on Information Processing in Sensor Networks (IPSN 2008), St. Louis, USA, 2008: 53–63.
    [15] ACHARYA U K and KUMAR S. Particle swarm optimization exponential constriction factor (PSO-ECF) based channel equalization[C]. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2019: 94–97.
    [16] CHAARI A, FDHILA R, NEJI B, et al. PSO based data routing in a networked distributed Pico-satellites system[C]. 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), Rome, Italy, 2012. 1–5.
    [17] WEI Y H, LENG Quan, HAN Song, et al. RT-WiFi: Real-time high-speed communication protocol for wireless cyber-physical control applications[C]. Proceedings of the 2013 IEEE 34th Real-Time Systems Symposium, Vancouver, Canada, 2013: 140–149.
    [18] 王晨吉. TDMA自组织网络中低时延动态自适应时隙分配协议研究[D]. [硕士论文], 西安电子科技大学, 2019.

    WANG Chenji. Research on a low transmission delay dynamic timeslot allocation protocol in TDMA Manet[D]. [Master dissertation], Xidian University, 2019.
    [19] ZHU Yan, SHENG Min, LI Jiandong, et al. Traffic modeling and performance analysis for remote sensing satellite networks[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–6.
    [20] MCMAHON G, SEPTIAWAN R, and SUGDEN S. A multiservice traffic allocation model for LEO satellite communication networks[J]. IEEE Journal on Selected Areas in Communications, 2004, 22(3): 501–507. doi: 10.1109/JSAC.2004.823417
    [21] IEEE. IEEE Std 802.11TM-2016 IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. New York: IEEE, 2016.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  154
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-05-27
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2023-02-07

目录

    /

    返回文章
    返回