一种基于 SCFT 算法的距离向多孔径 SAR 成像算法

郭琨毅 盛新庆 (中科院电子所微波成像技术国家级重点实验室 北京 100080) (北京理工大学 北京 100081)

摘要 距离向多孔径 SAR 模式是一种高分辨率的宽测绘带成像模式。反解运算和成像处理是距离向多孔径成像算法的两个部分,两者合理配合使用是实现多孔径模式高精度成像的关键。该文给出了一种采用变尺度傅里叶变换(SCaled FT, SCFT,)算法来实现成像处理并与反解运算结合的多孔径成像算法。与已有的处理算法比较,该算法在不显著增加计算复杂度的条件下可获得较高的成像质量。文中最后给出了仿真结果。
 关键词 SAR,多孔径,宽测绘带,变尺度傅里叶变换,成像
 中图分类号: TN957.52
 文献标识码: A
 文章编号: 1009-5896(2006)05-0927-05

A Range Multi-aperture SAR Imaging Method Based on SCFT

Guo Kun-yi Sheng Xin-qing

(Beijing University of Science and Engineering, Beijing 100081, China) (Institute of Electronics, Chinese Academy of Sciences, National Key Laboratory of Microwave Imaging Technology, Beijing 100080, China)

Abstract The SAR working mode of range multi-aperture is a high resolution imaging mode for wide swath. Resolving and imaging are the two parts of range multi-aperture imaging algorithm. How to match the two parts together is the key problem for the algorithm. This paper presents a new method based on SCFT (SCaled FT) to solve the problem. Simulation and comparison between different methods is also given to prove the feasibility of range multi-aperture SAR imaging method based on SCFT.

Key words SAR, Multi-aperture, Wide-swath, SCaled Farrier Fransfam (SCFT), Imaging

1 引言

宽测绘带微波成像技术对建立观测面积大、周期短的成 像系统,如海洋目标监视、洪水灾害监视,谷物生长等监测 系统具有十分重要的实际意义。目前SAR已有多种模式可实 现宽测绘带微波成像:距离向/方位向多波束 (Multiple elevation/azimuth beam),扫描 (SCAN),相位编码 (Phase coding)^[1]。距离向多孔径模式隶属于多波束模式,但与通常 所说的距离向多波束模式有着明显的不同,距离向多孔径成 像算法是利用同一目标到不同子天线的回波的相位差异,通 过反解处理从互相混叠的信号中分离出每个子测绘带各自 的回波信息。依据多孔径成像的原理,反解运算应在距离向 chirp信号聚焦之后进行才可获得较好的分离效果,因此反解 运算与成像处理搭配使用时,成像算法的具体实施会有所限 制。具体地,对于高精度成像算法而言成像处理中距离弯曲 必须校正,通用的RD算法通过距离压缩后在RD域通过插值 将弯曲校正,因此反解运算可在距离压缩之后方位聚焦之 前进行^[2]。而对于通用的CS算法,需先将回波变换到RD域将 不同的距离弯曲补偿成相似的曲线。而多孔径接收模式下, 此时回波未经分离处理,仍为不同测绘带回波的混叠,可见 通用的CS算法不能直接用于多孔径成像处理。然而CS算法 是一种高精度的成像算法,优于RD算法之处为不需要插值处 理,运算效率高,具有很高的实用价值。实际上CS算法是基 于SCFT^[3]算法来解决距离弯曲问题的。因此为了继承CS算法 优越性,本文从基本的SCFT算法出发,给出一种新的高精度 多孔径成像算法,该算法中成像处理与反解运算有效结合且 成像效果同于CS,不需要插值处理,不会显著增加运算量。 下文给出该算法的详细数学推导和仿真结果。

2 基于 SCFT 的距离向多孔径成像算法

正侧视工作下的距离向多孔径SAR的原理如图1(以两测 绘带为例,即*l=*2)。天线A₁,A₂发射脉冲;天线A₁,A₂ 接收回波。P₁,P₂分别为第1测绘带和第2测绘带内的点

图 1 距离向多孔径成像原理 Fig.1 Imaging principle of range multi-aperture SAR

设天线A₁发射的脉冲为

$$f_1(t) = \exp(j2\pi f_c \cdot t) \cdot P(t - t_n) \cdot \operatorname{rect}\left[\frac{t - t_n}{\tau}\right]$$
(1)

其中 $P(t-t_n) = \exp\left[j\pi \cdot k_r(t-t_n)^2\right]$, f_c 为载频, τ 为脉冲持续时间, t_n 为重复发射脉冲的时刻。 $x_n = vt_n$, 为天线相位中心的坐标, $w(\cdot)$ 为子天线的方位向方向图。记天线 A_l 接收来自第 h 测绘带的回波为 $h_{hl}(\cdot)$ 。令: $t-t_n = t'$, ct'/2 = r', x_n 表示为连续形式 x', r 为天线到目标点的斜距, $\Delta R = R - r = \sqrt{r^2 + (x_n - x)^2} - r$ 。

依据天线与目标的位置关系 h_{hl}(·) 可表示为(解调后)

$$h_{hl}(x',r') \approx \iint \mathrm{d} x \, \mathrm{d} r_{hl} \gamma(x,r_{hl}) \cdot \exp\left(-j\frac{4\pi}{\lambda} \cdot r_{hl}\right)$$
$$\cdot g_{hl}(x'-x,r'_{hl}-r_{hl},r_{hl}) \tag{2}$$

其中

$$g_{hl}(x'-x,r'-r_{hl},r_{hl}) = \exp\left(-j\frac{4\pi}{\lambda}\cdot\Delta R_{hl}\right)$$
$$\cdot \exp\left[j\pi k_r \left(\frac{2r'}{c} - \frac{2r_{hl}}{c} - \frac{2\Delta R_{hl}}{c}\right)^2\right]$$
$$\cdot \operatorname{rect}\left[\frac{\frac{2r'}{c} - \frac{2r_{hl}}{c} - \frac{2\Delta R_{hl}}{c}}{\tau}\right] \cdot w^2(x'-x,r_{hl}) \qquad (3)$$

由距离向多孔径接收的几何关系可知

$$r_{h1} = \left\lfloor r_{11} + (h-1) \cdot \frac{c}{2\text{PRF}} + (l-1) \cdot L_r \sin(\alpha(r_{h1})) \right\rfloor$$
$$\alpha(r) = \arccos \left[\frac{r^2 + h^2 + 2hR_E}{2r \cdot (h+R_E)} \right] - \psi$$

则接收回波时各回波的传播距离偏差为

$$\Delta r(r_{hl}) = r_{hl} - r_{1l} - (h-1) \cdot \frac{c}{2\text{PRF}}$$
$$= (l-1) \cdot L_r \sin(\alpha(r_{h1})) - (l-1) \cdot L_r \sin(\alpha(r_{11})) \qquad (4)$$

由于 $\Delta r(r_{hl}) < L_a/2$ 时,此延时可以忽略。又由于 $L_r \sin(\alpha(r_{hl}))/2 << r_{hl}$,可近似为

$$g_{h1}(x'-x,r'_{h1}-r_{h1},r_{h1}) \approx g_{hl}(x'-x,r'_{hl}-r_{hl},r_{hl})$$

由于天线接收信号是同一地域散射的回波,这里忽略散射回 波角度的微小改变对后向散射系数的影响,此时有 $\gamma_{h1}(x,r_{h1})$ = $\gamma_{hl}(x,r_{hl}),则 h_{hl}(\cdot)可表示为$ $h_{hl}(x',r') \approx \iint dx dr_{hl}(x,r_{hl})$

$$\cdot \exp\left\{-j\frac{4\pi}{\lambda}\cdot\left[r_{h}+(l-1)\cdot L_{r}\sin\left(\alpha(r_{h1})\right)\right]\right\}$$
$$\cdot g_{h1}\left(x'-x,r_{h1}'-r_{h1},r_{h1}\right)$$
(5)

依据多孔径接收的原理,子天线 A₁ 接收的回波可表示

$$A_{1}(x',r') = \sum_{h=1}^{k} h_{hl}(x',r') = \sum_{h=1}^{k} \iint dx dr_{h1}\gamma(x,r_{h1})$$

$$\cdot \exp\left\{-j\frac{4\pi}{\lambda} \cdot \left[r_{h1} + (l-1) \cdot L_{r}\sin(\alpha(r_{h1}))\right]\right\}$$

$$\cdot g_{h1}(x' - x, r_{h1}' - r_{h1}, r_{h1})$$
(6)

天线接收的回波数据点(x',r')中,包含了一个地域范围 内的所有点目标回波的叠加,反解处理针对具体的点目标位 置给出,因此为了将不同测绘带的回波信号分离,精确的反 解算法是将散布的点目标回波数据进行聚焦,消除距离向点 目标之间的干扰,这一过程即为距离向的chirp信号压缩处 理过程,具体处理算法如下:

子天线 A₁ 接收回波的频域表示为

$$\hat{\mathcal{A}}_{l}(x',r') = \iint \mathrm{d}x'\mathrm{d}r' \left[\sum_{h=1}^{k} h_{hl}(x',r')\right] \cdot \exp(-j\xi x') \cdot \exp(j\eta r')$$
$$= \sum_{h=1}^{k} H_{hl}(x',r') \tag{7}$$

这里 $H_{hl}(\xi,\eta)$ 为子天线 A_l 接收的第h测绘带的回波的频域表示。

$$H_{hl}(\xi,\eta) = \left\{ \iint \mathrm{d} x \, \mathrm{d} r_{h1} \gamma(x,r_{h1}) \\ \cdot \exp\left\{-j\frac{4\pi}{\lambda} \cdot \left[r_{h1} + (l-1)L_r \sin\left(\alpha(r_{h1})\right)\right] \right\} \\ \cdot \exp(-j\xi x) \cdot \exp(-j\eta r_{h1}) \right\} \cdot G_{h1}(\xi,\eta,r_{h1})$$
(8)

其 中
$$G_{h1}(\xi,\eta,r_{h1}) = \iint dx' dr'g_{h1}(x'-x,r'-r_{h1},r_{h1})$$

 $\cdot \exp[-j\xi(x'-x)] \cdot \exp[-j\eta(r'-r_{h1})]$,依据相位驻定原理^[3],
可求解得:

$$G_{hl}(\xi,\eta,r_{h1}) \approx \frac{\pi}{\sqrt{ab}} \operatorname{rect}\left[\frac{\eta}{2\alpha\tau/c}\right] \cdot \operatorname{rect}\left[-\frac{\xi}{4\pi/L_a}\right]$$
$$\cdot \exp\left(-j\frac{\eta^2}{4b}\right) \cdot \exp\left[-jr_{h1}K(\xi,\eta)\right] \tag{9}$$

其中
$$K(\xi,\eta) = \mu(\xi) + \nu(\xi)\eta + \zeta(\xi)\eta^2, \mu(\xi) = -\frac{\lambda\zeta}{8\pi}, \nu(\xi) = \frac{\lambda\zeta}{32\pi^2},$$

 $\zeta(\xi) = -\frac{\lambda^3\xi^2}{128\pi^3}$ 。

目标。

这里,相位分量 $\exp\left[-j\mu(\xi)r_{h1}\right]$ 是需要方位聚焦的多 普勒信号;相位分量 $\exp\left[-j\nu(\xi)\eta r_{h1}\right]$ 为距离弯曲的频域对 应项;相位分量 $\exp\left[-j\zeta(\xi)\eta^2 r_{h1}\right]$ 表征了距离向 chirp 信号 的斜率变化,为二次距离压缩因子(Secondary Range Compression, SRC),对于正侧视工作下的 SAR, SRC 随斜距 影响非常微弱,因此这里近似认为 $\exp\left[-j\zeta(\xi)\eta^2 r_{h1}\right] \approx$ $\exp\left[-j\zeta(\xi)\eta^2 r_0\right]$, r_0 为第 1 测绘带距离向中心的斜距;则 $H_{hl}(x',r')$ 可表示为

$$H_{hl}(\xi,\eta) \approx \frac{\pi}{\sqrt{ab}} \cdot \operatorname{rect}\left[\frac{\eta}{2\alpha\tau/c}\right] \cdot \operatorname{rect}\left[-\frac{\xi}{4\pi/L_a}\right] \cdot \exp\left(-j\frac{\eta^2}{4b'}\right)$$
$$\cdot \iint \mathrm{d} x \, \mathrm{d} r_{h1}\gamma(x,r_{h1}) \exp\left\{-j\frac{4\pi}{\lambda}(l-1)L_r\sin\left(\alpha(r_{h1})\right)\right\}$$
$$\cdot \exp\left[-jr_{h1}\left(\frac{4\pi}{\lambda} + \Omega(\xi)\eta + \mu(\xi)\right) - j\xi x\right]$$
(10)

其中 $\Omega(\xi) = 1 + \nu(\xi)$, $b' = b/[1 + 4b\zeta(\xi)r_0]$ 。

上式中 $\exp(-j\eta^2/(4b'))$ 为线形调频项,那么频域的距离向 参考函数为 $\exp(j\eta^2/(4b'))$,经距离压缩处理后回波数据的 表示为

$$\hat{A}_{l}(\xi, r') \approx \frac{\pi}{\sqrt{ab}} \cdot \operatorname{rect}\left[-\frac{\xi}{4\pi/L_{a}}\right]$$

$$\cdot \sum_{h=1}^{k} \left\{ \hat{\gamma}_{h}\left(\xi, \frac{r'}{\Omega(\xi)}\right) \exp\left\{-j\frac{4\pi}{\lambda}(l-1)L_{r}\sin\left(\alpha_{h}\left(\frac{r'}{\Omega(\xi)}\right)\right)\right\}$$

$$\cdot \exp\left[-j\frac{r'}{\Omega(\xi)}\left(\frac{4\pi}{\lambda} + \mu(\xi)\right)\right] \otimes \operatorname{sinc}[r']\right\}$$
(11)

其中 $a_h\left(\frac{r'}{\Omega(\xi)}\right) = a\left(\frac{r' + (h-1) \cdot c/(2\text{PRF})}{\Omega(\xi)}\right)$ 。 若近似认为

 $sinc[r'] = \delta[r'], 则式(11)又可近似为$

$$\hat{\mathcal{A}}_{l}(\xi, r') \approx \frac{\pi}{\sqrt{ab}} \cdot \operatorname{rect}\left[-\frac{\xi}{4\pi/L_{a}}\right]$$
$$\cdot \sum_{h=1}^{k} \hat{\gamma}_{h}\left(\xi, \frac{r'}{\Omega(\xi)}\right) \cdot \exp\left\{-j\frac{4\pi}{\lambda} \cdot (l-1) \cdot L_{r} \sin\left(\alpha_{h}\left(\frac{r'}{\Omega(\xi)}\right)\right)\right\}$$
$$\cdot \exp\left[-j\frac{r'}{\Omega(\xi)} \cdot \left[\frac{4\pi}{\lambda} + \mu(\xi)\right]\right]$$
(12)

将上式写为线形方程组形式:

$$\begin{bmatrix} \hat{A}_{1}(x',r') & \hat{A}_{2}(x',r') \cdots \hat{A}_{k}(x',r') \end{bmatrix} = \begin{bmatrix} \hat{h}_{11}(\xi,r') & \hat{h}_{21}\xi(x',r') & \cdots & \hat{h}_{k1}(\xi,r') \end{bmatrix} \times \boldsymbol{W}_{k \times k}$$
(13)

其中

$$\boldsymbol{W}_{k\times k} = \begin{bmatrix} 1 & \exp\left[-j\frac{4\pi}{\lambda} \cdot L_{r} \cdot \sin\left(\alpha_{1}\left(\frac{r'}{\boldsymbol{\varOmega}(\boldsymbol{\xi})}\right)\right)\right] \cdots \\ 1 & \exp\left[-j\frac{4\pi}{\lambda} \cdot L_{r} \cdot \sin\left(\alpha_{2}\left(\frac{r'}{\boldsymbol{\varOmega}(\boldsymbol{\xi})}\right)\right)\right] \cdots \\ \vdots & \vdots & \vdots \\ 1 & \exp\left[-j\frac{4\pi}{\lambda} \cdot L_{r} \cdot \sin\left(\alpha_{k}\left(\frac{r'}{\boldsymbol{\varOmega}(\boldsymbol{\xi})}\right)\right)\right] \cdots \\ \exp\left[-j\frac{4\pi}{\lambda} \cdot (k-1) \cdot L_{r} \cdot \sin\left(\alpha_{1}\left(\frac{r'}{\boldsymbol{\varOmega}(\boldsymbol{\xi})}\right)\right)\right] \end{bmatrix}^{-1} \\ \vdots \\ \vdots \\ \exp\left[-j\frac{4\pi}{\lambda} \cdot (k-1) \cdot L_{r} \cdot \sin\left(\alpha_{k}\left(\frac{r'}{\boldsymbol{\varOmega}(\boldsymbol{\xi})}\right)\right)\right] \end{bmatrix}^{-1}$$
(14)

这里称 **W**_{k×k} 为反解矩阵。显然通过线性方程组求解,可 获得各子测绘带经距离压缩后的回波数据,此过程称为反解 处理。目前已给出的不同反解矩阵均是式(14)在某种条件下 的近似^[4]。

由于各通道的后续成像处理方法相同,因此下文仅给出 第1通道的 SCFT 处理算法:

步骤1 将数据距离向 FFT:

$$\operatorname{out}_{1} = \operatorname{FFT}\left[\overline{\hat{A}}_{l}(\xi, r')\right] = \frac{\pi}{\sqrt{ab}} \cdot \operatorname{rect}\left[-\frac{\xi}{4\pi/L_{a}}\right]$$
$$\cdot \Gamma_{h}\left[\xi, \frac{4\pi}{\lambda} + \mu(\xi) + \eta\Omega(\xi)\right]\alpha \qquad (15)$$

$$\begin{split} & \hspace{1cm} \hspace{$$

步骤 2 数据乘以距离向参考函数 $\exp(-j\eta^2/(4D))$, 然 后再距离向 IFFT:

$$\operatorname{out}_{2} = \operatorname{FFT}_{r}^{-1} \left\{ \operatorname{out}_{1} \cdot \exp\left(-j\frac{\eta^{2}}{4D}\right) \right\}$$
$$\approx \int dr_{h1}\hat{\gamma}(\xi, r_{h1}) \cdot \exp\left[-jr_{h1} \cdot \left[\frac{4\pi}{\lambda} + \mu(\xi)\right]\right]$$
$$\cdot \int d\eta \exp\left(-j\eta \Omega(\xi) r_{h1}\right) \cdot \exp\left(-j\frac{\eta^{2}}{4D}\right) \cdot \exp(j\eta r') \quad (16)$$

由驻定相位原理计算得

$$\int d\eta \exp(-j\eta \Omega(\xi) r_{h1}) \cdot \exp\left(-j\frac{\eta^2}{4D}\right) \cdot \exp(j\eta r')$$
$$\approx \exp\left[jD(r' - r_{h1}\Omega(\xi))^2\right]$$

因此

$$\operatorname{out}_{2} \approx \int \mathrm{d}r_{h1}\hat{\gamma}(\xi, r_{h1}) \cdot \exp\left[-jr_{h1} \cdot \left[\frac{4\pi}{\lambda} + \mu(\xi)\right]\right]$$
$$\cdot \exp\left[jD\left(r' - r_{h1}\Omega(\xi)\right)^{2}\right]$$
(17)

步骤 3 将处理数据乘以距离向参考函数 $\exp(-jCr'^2)$, 然后距离向 FFT:

$$\operatorname{out}_{3} = \operatorname{FFT}\left\{\operatorname{out}_{2} \cdot \exp\left(-jCr'^{2}\right)\right\}$$
$$= \int dr_{h1}\hat{\gamma}(\xi, r_{h1}) \cdot \exp\left[-jr_{h1} \cdot \left[\frac{4\pi}{\lambda} + \mu(\xi)\right]\right]$$
$$\cdot \int dr' \exp\left[jD\left(r' - r_{h1}\Omega(\xi)\right)^{2}\right]$$
$$\cdot \exp\left(-jCr'^{2}\right) \cdot \exp\left(-j\eta r'\right)$$
(18)

由驻定相位原理计算得:

$$\int dr' \exp\left[jD(r'-r_{h1}\Omega(\xi))^{2}\right] \cdot \exp\left(-jCr'^{2}\right) \cdot \exp(-j\eta r')$$

$$\approx \exp\left[j\frac{(\eta+2D\Omega r_{h1})^{2}}{4(C-D)}\right] \cdot \exp\left(jD\Omega^{2}r_{h1}^{2}\right)$$

因此

$$\operatorname{out}_{3} = \int \mathrm{d}r_{h1}\hat{\gamma}(\xi, r_{h1}) \cdot \exp\left[-jr_{h1} \cdot \left[\frac{4\pi}{\lambda} + \mu(\xi)\right]\right]$$
$$\cdot \exp\left[j\frac{(\eta + 2D\Omega r_{h1})^{2}}{4(C-D)}\right] \cdot \exp(jD\Omega^{2}r_{h1}^{2}) \tag{19}$$

步骤 4 数据乘以距离向参考函数 $\exp(-j\eta^2/(4B))$, 然 后再距离向 IFFT:

$$\operatorname{out}_{4} = \operatorname{FFT}^{-1} \left\{ \operatorname{out}_{5} \cdot \exp\left(-j\frac{\eta^{2}}{4B}\right) \right\} = \int dr_{h1}\hat{\gamma}(\xi, r_{h1})$$
$$\cdot \exp\left[-jr_{h1} \cdot \left[\frac{4\pi}{\lambda} + \mu(\xi)\right]\right] \cdot \exp\left(j\frac{CD\Omega^{2}r^{2}}{C-D}\right)$$
$$\cdot \int d\eta \cdot \exp\left[j\frac{\eta^{2}}{4(C-D)}\right] \cdot \exp\left[j\frac{D\Omega r_{11}\eta}{(C-D)}\right]$$
$$\cdot \exp\left(-j\frac{\eta^{2}}{4B}\right) \cdot \exp(j\eta r')$$
(20)

令
$$C - D = B$$
, $D\Omega = -B$, $C\Omega = -A$, 则式(20)变为
out₄ = $\hat{\gamma}_h(\xi, r') \cdot \exp\left[-j\left(r'\frac{4\pi}{\lambda} + r'\mu(\xi) + Ar'^2\right)\right]$ (21)
步骤 5 数据乘以参考函数 $\exp\left[j\left(r'\frac{4\pi}{\lambda} + r'\mu(\xi) - Ar'^2\right)\right]$,

然后方位向 IFFT

$$\operatorname{out}_{5} = \operatorname{IFFT}_{x}^{-1} \left\{ \operatorname{out}_{5} \cdot \exp\left[j \left(r' \frac{4\pi}{\lambda} + r' \mu(\xi) - Ar'^{2} \right) \right] \right\}$$
$$= \int d\xi \hat{\gamma}_{h}(\xi, r') \cdot \exp\left(j\xi x' \right) \approx \hat{\gamma}_{h}(x', r')$$
(22)

可见,通过对方位向线性调频信号的变尺度傅里叶变换 处理,最终可将方位向多普勒信号聚焦,与单孔径成像相比 并无分辨率损失。完整的基于 SCFT 距离向多孔径成像处理的流程图见图 2。

图 2 距离向多孔径成像流程图

Fig.2 Flow chart of range multi-aperture SAR imaging algorithm

该算法具体实施时,尺度参数 C, D, B, A 满足关系: C-D=B, $D\Omega(\xi)=-B$, $A=-C\Omega(\xi)$ 。本文中给定 ,使得 $\exp\left(-j\frac{\eta^2}{4\pi}\right)$ η^2 减少 SCFT 中第 $= \exp \left| -j \right|$ $\overline{4D}$ 4b'1步参考函数的运算,其他尺度参数由上述关系导出。若两 天线的回波数据块的大小为 $N \times M$,则整个多孔径成像处理 的运算复杂度为 $N \cdot M \cdot \log_2(N \cdot M) + N \cdot M(2\log_2(M+7))$, 相同数据大小下的采用最简单的线性插值的 RD 多孔径成像 处理的运算复杂度为 $N \cdot M \log_2(N \cdot M) + 4N \cdot M + O(\text{RCMC})$ $\approx N \cdot M \log_2(N \cdot M) + 14N \cdot M$, $\oplus \neq \lceil N \cdot M \log_2(N \cdot M) + N \cdot M \rceil$ $\cdot (2\log_2 M + 7)] / [N \cdot M \log_2 (N \cdot M) + 14N \cdot M] < 2$,可见基 于 SCFT 的距离向多孔径成像算法的复杂度与基于 RD 算法 的成像算法的复杂度同一量级,当为了提高图像质量采用高 精度的插值运算时两距离向多孔径成像算法的复杂度更接 近。

3 距离向多孔径成像算法仿真

本文给出了基于 RD 成像的算法和本文提出的基于 SCFT 的距离向多孔径成像算法的仿真比较结果。点目标仿 真试验中假定两测绘带内的对应位置上存在后向散射系数 相同的点目标,经成像处理后结果见图 3,图 4,分布目标仿 真试验中给定两测绘带的后向散射系数分布,依据距离向多 孔径接收的过程进行回波模拟,然后分别用两种成像算法进 行处理,结果见图 3。 仿真参数:卫星高度 700km, PRF1500Hz,脉冲带宽 40MHz,脉冲持续时间10μs,卫星速度 7.58km/s,波长 0.24m, 子天线间距 3m,中心视角 45°,多普勒中心频率 200Hz。

点目标仿真试验:

首先本文给出基于 RD 的多孔径成像算法中经弯曲校正 和未经弯曲校正的仿真比较结果,距离弯曲较正时采用线性 插值。为了视图的方便将两测绘带的点目标的成像结果截取 后拼接,仿真结果见图 3。距离向剖面图中左边为第 1 测绘 带内点目标的成像结果,右边为第 2 测绘带内点目标的成像 结果,方位向剖面图所示的是为第 1 测绘带目标。

由图 3 可见,经距离弯曲校正后两测绘带的点目标的峰 值旁瓣比和积分旁瓣比明显改善。

图 3 基于 RD 的多孔径成像结果

Fig.3 Imaging result of range multi-aperture SAR based on RD

为了说明基于 SCFT 多孔径成像算法的有效性,本文给 出了该算法的仿真结果与上述基于 RD 的多孔径成像算法仿 真结果的比较。这里需要说明的是,在基于 SCFT 算法的反 解矩阵中,

$$\begin{split} &\Omega(\xi) = 1 + \frac{\lambda^2 \xi^2}{32\pi^2} = 1 + \frac{\lambda^2 \cdot \left(\frac{2\pi}{N \cdot da}\right)^2}{32\pi^2} = 1 + \frac{\lambda^2}{2N^2 L_r^2} = 1 + \frac{1}{2} \left(\frac{\beta}{N}\right)^2, \\ &\overline{\pi} \frac{\beta}{N} << 1, \ \text{M} \frac{r_{11}'}{\Omega(\xi)} \approx r_{11}', \ \text{A}\chi \dot{T} \dot{T} \ddot{T} \dot{T} \dot{T} \dot{T} \approx 1.25 \times 10^{-5}, \ \text{M} \dot{H} \\ &\overline{\chi} & \overline{\chi} = \left[1 - \exp\left(-j\frac{2\pi}{\lambda} \cdot L_a \sin(\alpha(r_{11}'))\right)\right]^{-1}, \end{split}$$

仿真结果见图 4。

由上图可见,在基于 SCFT 的多孔径成像算法的点目标 成像结果中,峰值旁瓣比和积分旁瓣比进一步改善,效果优

SCFT and the algorithm based on RD

于基于简单线性插值的 RD 多孔径成像处理。

分布目标仿真试验:为了更直观地给出两种多孔径成像 处理的效果比较,本文进行了分布目标的仿真试验。由于仿 真的目的在于比较两算法的成像效果,因此回波模拟中未加 入系统误差和传播误差。给定地面的后向散射系数分布,依 据距离向多孔径的工作过程生成回波数据,这里回波起伏用 高斯分布描述,则所生成的理想回波数据的成像结果见图 5。

图 5 分布目标仿真结果 (a)给定后向散射系数分布 (b)基于 RD(线情插值)的 多孔径成像结果 (c)基于 SCTT 的多孔径成像结果 Fig.5 Distributed target simulation imaging result (a) Given RCS (radar cross section) (b) Imaging result of multi-aperture method based on RD (linear interpolation) (c) imaging result of multi-aperture method based on SCFT

4 结束语

随着测绘带宽度和高分辨率的双重实际需求,距离向多 孔径模式 SAR 成像模式日益受到重视,精确可行的成像算 法是该模式趋向实用的关键技术之一。距离向多孔径成像算 法是通过反解运算来实现不同测绘带回波信号的分离,然后 通过成像处理获得不同测绘带的雷达图像。反解处理要求先 对回波距离向的 chirp 信号聚焦处理,这与目前成功应用的 高精度成像 CS 算法流程相悖,为了继承 CS 算法的优点并 能与反解处理匹配应用,本文提出了一种基于 SCFT 的多孔 径成像算法。由于该方法的成像处理的基本原理是与 CS 算 法相同,都是采用变尺度傅里叶变换(SCFT)来处理方位向多 普勒信号,因此该算法的效果与 CS 算法的效果相同,而且 不需要插值处理,又不需先做方位向处理。为了验证该方法 的正确有效,本文给出了该方法与基于 RD 的多孔径成像算 法的对比仿真结果。从仿真结果来看,基于 SCFT 的多孔径 成像算法确实是一种可行的高精度距离向多孔径成像算法。

参 考 文 献

- Currie A, Brown M A. Wide-swath SAR. *IEE proc.-F*, 1992, 139(2): 122 – 135.
- [2] 王小青,郭琨毅,朱敏慧,盛新庆.距离向多孔径接收宽测绘带 SAR成像方法的研究.电子与信息学报,2004, 26(5): 739-745.
- [3] Franceschetti G, Lanari R. synthetic aperture radar processing. Florida: CRC press, 1999, Chapter2, 3.
- [4] 郭琨毅, 王小青, 盛新庆. 距离向多孔径接收宽测绘带 SAR 三
 种成像算法的比较. 电波科学学报, 2005, 20(1): 119-124.
- 郭琨毅: 女,1976年生,博士,研究方向为微波成像新体制及仿 真技术.
- 盛新庆: 男, 1968 年生, 研究员, 博士生导师, 研究方向为计算 电磁学和微波遥感.