一种基于 PTS 技术降低 OFDM 系统峰均比的改进算法

李恩玉* 杨士中 吴皓威 廖海黔 (重庆大学通信与测控中心 重庆 400030)

摘 要:该文在研究部分传输序列(PTS)技术降低 OFDM 系统峰均功率比(PAPR)的基础上,提出了多级寻优的改进 PTS 方法。该方法通过增加寻优的级数,而减少每级优化所预设的相位集合中的元素个数来寻找最优相位旋转因子,从而改变传统 PTS 技术中的计算量随分割子序列数和待选相位集合元素的个数的增加而呈指数增长的趋势,并使该方法与次优搜索方法相结合。通过计算复杂度的分析和仿真结果表明,同传统的方法相比,该方法不仅能较大地降低计算复杂度,且能改善降低峰均功率比的性能。

关键词: 正交频分复用; 部分传输序列; 峰均比; 傅里叶变换; 累积互补函数

 中图分类号: TN919.72
 文献标识码: A
 文章编号: 1009-5896(2011)10-2511-05

 DOI: 10.3724/SP.J.1146.2011.00290

An Improved Method for PAPR Reduction in OFDM Systems Based on the PTS

Li En-yu Yang Shi-zhong Wu Hao-wei Liao Hai-qian (Center of Communication and Tracking Telemetering & Command, Chongqing University, Chongqing 400030, China)

Abstract: In the Orthogonal Frequency Division Multiplexing (OFDM) systems, based on the studying of Peak to Average Power Ratio (PAPR) reduction by using Partial Transmit Sequence (PTS) technology, an improved PTS scheme of multi-stage optimization is proposed. This method is to find the optimal phase rotation factors by increasing the number of optimization steps and reducing the number of pre-determined phase elements in the set of each step, and change the trend of computational complexity which is higher with more disjoint sub-blocks and more predetermined phase factors. This method can be used in conjunction with suboptimal search algorithm. Analysis of computational complexity and simulation results show that, compared with traditional scheme, this method can not only largely reduce the computational complexity, but also reduce the PAPR.

Key words: Orthogonal Frequency Division Multiplexing (OFDM); Partial Transmit Sequence (PTS); Peak to Average Power Ratio (PAPR); IDFT; Complementary Camulative Distribution Function (CCDF)

1 引言

由于正交频分复用(OFDM)技术具有能够有效 利用频率带宽和抗多径干扰等优点,因此,在无线 通信系统中得到了广泛的应用。但是由于 OFDM 信 号是由多个经过调制的独立的子载波信号相互叠加 而成,如果各子载波的相位相同或相近时,叠加的 信号便会产生较大的瞬时功率峰值,即产生较大的 峰值功率与平均功率的比值,简称峰均比(PAPR)。 与传统的单载波传输技术相比较,较高的 PAPR 对 放大器的数/模转换器(D/A)或模/数转换器(A/D) 的线性动态范围有很高的要求,如果系统线性动态 范围不能满足信号的变化,就会造成信号畸变,使 叠加信号的频谱发生变化,从而导致子信道之间的

2011-03-30 收到, 2011-06-23 改回 重庆市科技攻关项目(CSTC2009AB2167)资助课题

*通信作者: 李恩玉 lienyu0123@163.com

正交性遭到破坏,产生严重的相互干扰,使通信系 统性能严重恶化。针对降低峰均比问题,国内外学 者进行了大量的研究,提出了各种解决方案,主要 包括限幅类技术^[1-3],概率类技术^[4-8],编码类技 术^[9,10]。其中,概率类技术最典型的方法是选择线性 映射(SLM)^[4]技术和部分传输序列(PTS)^[5-8]技术。 这种技术是通过线性干扰降低峰值出现的概率,因 此不会对信号产生畸变。

在 PTS 技术中,影响降低 OFDM 系统 PAPR 性能的主要因素包括:数据分割方法、分割子序列 数和待选相位集合中元素的个数。分割方法包括: 相邻分割、交织分割和随机分割。其中随机分割的 效果最好,交织分割降低峰均比的性能最差。如果 在某一分割方法下,要使 PTS 技术降低 PAPR 的 效果有较大的提高,那么就要增大分割子序列数或 增加待选相位集合元素的个数。在分割子序列数为 *V*,相位集合元素的个数为W 时,由 PTS 原理可 知,需要计算 $V \land N$ 点的 IDFT 后,会有 W^V 个相 位旋转向量组合,这样,每一个相位旋转向量对应 $VN \land 2$ 数乘法和 $(V-1)N \land 2$ 数加法。因此,利 用 PTS 技术降低峰均比时,使性能提高的同时,其 计算量会随着W(通常 $W \le 8$,因为随W 取值增大, 其降低 PAPR 的性能提高得不明显,而其计算量会 变得非常大)和V 呈指数趋势急速增大。

为了能降低PTS技术的计算量或提高降低 PAPR的性能,随后提出了各种改进的PTS算法。 文献[5]提出了一种针对分割子序列数V的双层相位 序列的次优方法,此方法虽能降低V较大时的计算 量,但性能基本与最外层的等价分割子块数有关, 和分割子序列数相等的单层的传统分割方法的性能 比较,虽然降低了计算量,但其降低PAPR的性能 却大打折扣。文献[6]给出了一种W = 4和W = 8时 非均匀相位元素取值的方法。该方法比相位元素均 匀取值的算法性能有0.2~0.3 dB的改善,但其计算 量反而比相位元素均匀取值时的传统方法增大了 W倍。由此,可以看出以上几种改进的方案都不能 保证改进PAPR性能并同时降低计算复杂度。

本文在研究PTS技术的基础上,提出了多级寻优算法的方案,改变计算量随W增长的趋势,而又 没有减少相位集合元素的个数。最后给出了计算复 杂度和降低峰均比的性能仿真分析比较。

2 OFDM 系统中 PAPR 的定义及 PTS 算法

2.1 PAPR 的定义

在子载波数为N的 OFDM 系统中, $X_k(k = 0,1, ..., N-1)$ 表示经过PSK或QAM 调制的用于传输的 原始频域信号,因此复数基带信号可写为

$$s(t) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_k e^{j2\pi f_k t}, \ 0 \le t \le T_s$$
(1)

其中 T_s 为 OFDM 信号的符号周期。对 OFDM 信号 以间隔 $\Delta t = T_s / JN$ 进行采样,采样后的 OFDM 离 散时间信号表示为

$$s_n = s(n\Delta t) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_k e^{j2\pi k(n/JN)}, \ 0 \le n \le JN - 1$$
(2)

$$s_n = \frac{1}{\sqrt{N}} \sum_{k=0}^{JN-1} X'_k e^{j2\pi k (n/JN)}, \ 0 \le n \le JN - 1$$
 (3)

其中 $X'_{k} = \begin{cases} X_{k}, k < N \\ 0, k \ge N \end{cases}$ 。这样, 过采样后的 OFDM

信号 PAPR 定义为

$$\operatorname{PAPR}_{[s_n]} = 10 \log \frac{\max\left\{\left|s_n\right|^2\right\}}{E\left\{\left|s_n\right|^2\right\}}$$
(4)

其中 E {•} 表示 OFDM 信号的功率平均值。

通常采用累积互补函数(CCDF)来衡量某一方 法降低峰均比的性能,即

 $\label{eq:CCDF} \operatorname{CCDF} = \Pr\left\{\operatorname{PAPR} > \operatorname{PAPR}_0\right\} = 1 - (1 - e^{-\operatorname{PAPR}_0})^{JN} \tag{5}$

2.2 PTS 算法基本原理

传统的 PTS 技术 是将向量 $X = [X_0, X_1, ..., X_{N-1}]$ 分割成 V 组互不重叠的子向量,分别由 $\{X_v, v = 1, 2, ..., V\}$ 来表示,对每一个子向量的每个子载 波都乘一个相同的相位旋转因子 b_v ,然后将这 V 个向量按式(6)方式组合起来,PTS原理框图如图 1 所示。

图1 PTS基本原理框图

$$\boldsymbol{X}' = \sum_{v=1}^{V} b_v \boldsymbol{X}_v \tag{6}$$

其中 $b_v = e^{j\varphi_v}$, $\varphi_v \in [0, 2\pi)$ 。对式(6)进行IDFT, 得到

$$\boldsymbol{x}' = \text{IDFT}\left\{\boldsymbol{X}'\right\} = \sum_{v=1}^{V} b_v \cdot \text{IDFT}\left\{\boldsymbol{X}_v\right\} = \sum_{v=1}^{V} b_v \boldsymbol{x}_v \quad (7)$$

PTS技术的目的就是寻找适当的相位旋转因 子,使其满足

$$\{b_1, b_2, \cdots, b_V\} = \underset{\{b_1, b_2, \cdots, b_V\}}{\arg\min} \left\{ \max_{1 \le n \le N} \left| \sum_{v=1}^V b_v \boldsymbol{x}_v \right|^2 \right\}$$
(8)

其中 $\arg\min(\cdot)$ 表示函数取得最小值时所用的判据 条件。理论上 φ_v 可以取 $[0,2\pi)$ 区间中的任意值,但 在实际操作中, b_v 一般在预先给定的离散相位集合 中取值。

3 多级寻优的 PTS 算法

3.1 理论依据

考虑两个相位旋转因子 $b_v = e^{j\varphi_v} \pi b'_v = e^{j\varphi'_v}$,其 中 $\varphi_v \in \{\varphi_i, i=1,2,\dots,V\}$, $\varphi'_v \in \{\varphi'_j, j=1,2,\dots,V'\}$ 。 在此,定义:

$$\left\{\varphi_{1},\varphi_{2},\cdots,\varphi_{V}\right\}\oplus\left\{\varphi_{1}^{'},\varphi_{2}^{'},\cdots,\varphi_{V^{'}}^{'}\right\}\stackrel{\Delta}{=}\left\{\underbrace{\varphi_{1}+\varphi_{1}^{'},\varphi_{1}+\varphi_{2}^{'},\cdots,\varphi_{1}+\varphi_{V^{'}}^{'},\cdots,\varphi_{V}+\varphi_{1}^{'},\varphi_{V}+\varphi_{2}^{'},\cdots,\varphi_{V}+\varphi_{V^{'}}^{'}}_{VV'}\right\}\tag{9}$$

假设给定一个离散的相位集合 Φ_W ,

$$\Phi_{W} = \left\{ 0, \frac{1}{W} 2\pi, \frac{2}{W} 2\pi, \cdots, \frac{W-1}{W} 2\pi \right\}$$
(10)

其中,右下标W表示相位集合中元素的个数。如果 再选取另外一个相位集合 B_N

$$B_N = \left\{ \theta_i \middle| \theta_i \le \frac{\pi}{2}; i = 1, 2, \cdots, N; N \ge 2 \right\}$$
(11)

由式(9)的定义可得

 $\Phi_{W/2} \oplus B_N$

$$= \left\{ \underbrace{\theta_{i}, \frac{1}{W/2} 2\pi + \theta_{i}, \frac{2}{W/2} 2\pi + \theta_{i}, \cdots, \frac{W/2 - 1}{W/2} 2\pi + \theta_{i}, \cdots}_{NW/2} \right\}$$
(12)

如果选取
$$B_N = \{0, \pi/2, \cdots\}$$
,由式(12),显然可见
 $\Phi_W \subseteq \Phi_{W/2} \oplus B_N$ (13)

3.2 改进的PTS算法

基于上面的思想,在此给出多级寻优的PTS算法过程,如图2所示。由分析可知,在分割子序列数 V一定的前提下,只有待选相位旋转集合元素个数 W=2时,PTS技术的穷尽搜索次数最少。由于通 常待选相位集合中的元素取值为 $[0,2\pi)$ 中的均匀分 布,这样,我们可取第1级系数优化的待选相位集合 为 $B_2^1 = \{0,\pi\} (B_2^1 右上标数字1表示第1级优化,右下$ 标2表示相位集合中元素的个数为2)。经过运用传统 $PTS算法寻优后,选取最优的系数<math>b_v^1(v=1,2,\cdots,V)$ (其中, b_v^1 表示第1级优化后的第v个分割子序列 所对应的系数)与 x_v 结合,则每个分割子序列时域数 据变为

$$\boldsymbol{x}_{v}^{1} = b_{v}^{1} \boldsymbol{x}_{v} \tag{14}$$

其中 $b_v^1 = e^{i\varphi_v^1}$, $\varphi_v^1 \in B_2^1$, $v = 1, 2, \dots, V$ 。此时,优化 后的第1级系数向量被存储后,优化的子序列数据继 续进行第2级系数优化,而此时的待选相位集合设置 为 $B_2^2 = \{0, \pi/2\}$,则优化后的子序列时域数据变

图2 多级寻优的PTS原理框图

为

$$\boldsymbol{x}_v^2 = b_v^2 \boldsymbol{x}_v^1 \tag{15}$$

其中 $b_v^2 = e^{j\varphi_v^2}$, $\varphi_v^2 \in B_2^2$, $v = 1, 2, \dots, V$ 。依次类同, 设第k ($1 \le k \le n$)级优化的相位集合 $B_2^k = \{0, \pi/2^{k-1}\}$,则经过第k级优化后的时域子序列数据变为

$$\boldsymbol{x}_v^k = b_v^k \boldsymbol{x}_v^{k-1} \tag{16}$$

其中 $b_v^k = e^{j\varphi_v^k}$, $\varphi_v^k \in B_2^k$, $v = 1, 2, \dots, V$ 。最后经过n级系数优化结束后,输出的时域数据为

$$\boldsymbol{x}' = \sum_{v=1}^{V} b_v^n \boldsymbol{x}_v^{n-1} = \sum_{v=1}^{V} b_v^n \left(b_v^{n-1} \left(\cdots \left(b_v^1 \boldsymbol{x}_v \right) \cdots \right) \right) \quad (17)$$

其中 $b_v^n = e^{j\varphi_v^n}$, $\varphi_v^n \in B_2^n$ 。令 $b_v' = b_v^n b_v^{n-1} \cdots b_v^1 = e^{j\varphi_v'}$, 即 $\varphi_v' = \varphi_v^1 + \varphi_v^2 + \cdots + \varphi_v^n$ 。那么, 式(17)可写为

$$\boldsymbol{x}' = \sum_{v=1}^{V} b'_{v} \boldsymbol{x}_{v} \tag{18}$$

其中
$$\varphi'_v \in B_2^1 \oplus B_2^2 \cdots \oplus B_2^n$$
。 由式(12)可知
 $B_2^1 \oplus B_2^2 \cdots \oplus B_2^n = \left\{ \pi k/2^{n-1}, \ k = 0, 1, 2, \cdots, 2^n - 1 \right\}$ (19)

经过多级优化后的相位旋转因子 b'_v 的相位 $\varphi'_v \in \{\pi k/2^{n-1}, k=0,1,2,\dots,2^n-1\}$ 。这样,就可以把 含有多个相位集合元素个数($W \ge 4$)的情况,近似 转化成每级只含有两个相位元素的多级优化过程。

3.3 多级次优搜索的PTS算法

考虑到多级优化的PTS算法采用传统的遍历搜 索,当分割子序列数V≥8,n≥2时,其搜索次数 不小于384。为了进一步降低计算量,在此采用与次 优搜索相位旋转因子相结合的方法。算法如下:

(1)将N个子载波分割成V个序列。

(2)对 N 个子序列分别作IDFT,转换成时域子 序列,令 n = 1。

(3)令 $b_v^n = 1$, $v = 1, 2, \dots, V$ 。在此条件下,计算 峰均比 PAPR₀ = 10 log(max| x'_n |/ $E\{|x'_n|^2\}$),其中 x'_n = $\sum_{v=1}^{V} b_v^n \cdot \text{IDFT}\{X_v\}$,并令 index = 1。

(4) 令 $b_{index} = \pi/2^{n-1}$, 并且同样计算此时的 PAPR。

(5)如果PAPR > PAPR₀,则 $b_{index} = 1$;否则, PAPR₀ = PAPR,且index = index + 1。

(6)如果index < V +1,则返回步骤(4);否则步骤(7)。

(7)得到第*n*次的相位旋转系数*b_vⁿ*(*v* = 1,2, ...,*V*), 且*n* = *n* + 1。

(8)如果*n*小于预设优化次数,则返回步骤(3); 否则步骤(9)。

(9)计算 n 次优化后的系数,结束。

4 性能分析

4.1 计算复杂度分析

在W, V较小的情况下,运用PTS技术降低 PAPR的性能和最优的遍历搜索的计算量都比较低,在此只研究在 $W \ge 4$, $V \ge 4$ 时的计算量降低情况。

由3.2节可知,采用n级优化的PTS技术,如果 每级优化都采用遍历搜索方法,除第1级优化搜索次 数为 2^{V-1} ,其他每级搜索次数都为 2^{V} ,因此总的计 算量为 $(2n-1)\cdot 2^{V-1}$ 。

定义计算复杂度减少率(CCRR)为 CCRR = $(1 - C/C_0) \times 100\%$

 $= \left[1 - (2n-1)(2/W)^{V-1} \right] \times 100\%$ (20) 和 *C*。分别表示改进算法与传统算法的计算

其中 C 和 C₀ 分别表示改进算法与传统算法的计算量。

多级遍历搜索与传统遍历搜索方法相比较的 CCRR值,如表1所示。由表1和式(20)可以看出,改 进的多级优化方法同传统方法相比较,其CCRR值 随着W,V的增加而增大。由式(19)可知,多级寻 优的PTS方法的计算量只有在n > 32时,超过 V = 4,W = 8时传统PTS方法的计算量;在n > 64时,超过V = 8,W = 4时传统PTS方法的计算量; 在n > 8192时,超过V = 8,W = 8时传统PTS方法 的计算量。

n	V=4		V=8	
	W=4	W=8	W=4	W=8
2	62.50	95.31	98.83	99.995
3	37.50	92.18	98.05	99.992
4	12.50	89.06	97.27	99.989
5	-12.50	85.94	96.48	99.986
6	-37.50	82.81	91.41	99.933

表1 多级遍历搜索与传统遍历搜索CCRR比较

对于相位集合元素个数为W,且取0到2π之间 的均匀分布的情况下,采用次优搜索方法的搜索次 数为(W-1)V。而对于多级优化的PTS算法采用次 优搜索的方法,由于第1步搜索时,相位集合元素是 取0到2π之间的均匀分布值,因此只需要V-1次搜 索,而其他每步搜索的循环迭代则需要V次。这样, 次优搜索的多级寻优的PTS算法总的搜索次数为 nV-1。因此,采用次优搜索方法降低PAPR即使 用较大的分割子序列数和候选相位集合元素数,其 计算复杂度与遍历搜索相比是非常小的。那么在较 大的相同分割子序列数的情况下,多级次优搜索与

$$nV - 1 = (W - 1)V \tag{21}$$

即,n = W - 1 + 1/V,由于V较大,则 $n \approx W - 1$ 。 由此,可以看出,采用多级次优搜索方式时,每增加一级,其搜索次数增加V次,所以其计算量增长的速度是非常小的,当进行W - 1级的运算才和原始的次优搜索算法的计算量同3级次优搜索的相当;在W = 8时次优搜索方法的计算量同7级次优搜索的相当;在W = 8时次优搜索方法的计算量同7级次优搜索方法的,其计算量大于原始的次优搜索方法,但增大的计算量与遍历搜索相比也是非常小的,与其改善降低PAPR的性能相比是值得的。

4.2 性能仿真比较

为了验证改进方法降低PAPR的性能,在整个 仿真过程中,本文采用了子载波数N = 256的QPSK 调制信号,过采样率J = 4的伪随机分割。每次仿真 计算都采用10000次迭代求其CCDF曲线。

由于在 $V \ge 8$, W = 2时, 传统的PTS方法的计 算量较大, 图3只给出改进方法与V = 8, W = 4时 的遍历搜索的CCDF性能仿真比较结果, 从图中可 以看出, 改进方法每增加一次优化, 降低PAPR的 性能都有所提高0.1~0.2 dB, 而计算量只增加2^V次。 当n = 6时, 其性能已经超过V = 8, W = 4时的原 始算法, 由表1可知, 其计算量与原始算法相比减少 91.41%, 如果再增大优化次数时, 仿真改善降低 PAPR性能并不明显。改进方法只有当经过63次反 复寻优后的计算量才和原始算法的计算量相当。但 通过仿真发现, 随着寻优次数的增多, 虽其计算量 也随着增大, 但其改善降低PAPR的性能却越来越 不明显, 因此设置较多次数的寻优步数是没有必要 的, 一般设置n不超过6。

图4,图5给出了不同情况下次优搜索的性能比 较曲线。从图4可以看出:当n=3时,此算法性能 已经超过W=4时的次优搜索算法,而计算量却相 当。当n=6其性能比V=8,W=8时的次优搜索 算法在10⁻³时约有0.15 dB的提高,接近V=8, W=2时遍历搜索的性能,而计算量只为V=8, W=8时次优搜索的83.93%,为V=8,W=2时 遍历搜索的36.72%。从图5可以看出:当n=3时, 性能已经超过W=4时的次优搜索算法;当n=6其性能比V=16,W=8时的次优搜索算法在10⁻³ 时约有0.3 dB的提高,计算量只为84.82%。当V=32, n=6时,其性能分别和V=8,W=4和V=16, W=2时最优算法相差不大,而搜索次数分别是他 们的1.17%和0.58%。

图3 遍历搜索降低PAPR的CCDF比较曲线

图4 V = 8次优搜索的CCDF比较曲线

图5 V = 16次优搜索的CCDF比较曲线

从以上的比较分析可以看出,多级优化的PTS 算法不仅能较大的降低计算量,而且其降低PAPR 的性能与传统的方法相比较并没有降低,甚至性能 有所提高。

5 结束语

本文的研究主要从降低 PTS 技术的计算量出 发,在不降低其性能前提下,提出了一种多级优化 的 PTS 算法。该方法通过减少每步优化的相位元素 个数,而增加优化级数来降低计算复杂度。此种方 法并与次优搜索算法相结合,进一步降低了计算复 杂度。通过仿真比较分析,该算法在较大的分割子 序列数目的情况下,不仅能较大的降低计算量,而 且其降低 PAPR 的性能也有所提高。

参考文献

- Wang Y C and Luo Z Q. Optimized iterative clipping and filtering for PAPR reduction of OFDM signals[J]. *IEEE Transactions on Communications*, 2011, 59(1): 33–37.
- [2] Tong Jun, Li Ping, Zhang Zhong-hao, et al. Iterative soft compensation for OFDM systems with clipping and superposition coded modulation[J]. *IEEE Transactions on Communications*, 2010, 58(10): 2861–2870.
- [3] Vallavaraj A, Stewart B G, and Harrison D K. An evaluation of modified μ -Law companding to reduce the PAPR of OFDM systems[J]. AEU-International Journal of Electronics and Communications, 2010, 64(9): 844–857.
- [4] Heo Seok-joong, Noh Hyung-suk, No Jong-seon, et al. A modified SLM scheme with low complexity for PAPR reduction of OFDM systems[J]. IEEE Transactions on

Broadcasting, 2007, 53(4): 804-808.

- [5] Wong Sai-ho, Madhukumar A S, and Chin F. Peak-to-average power reduction using partial transmit sequences: a suboptimal based on dual layered phase sequencing[J]. *IEEE Transactions on Broadcasting*, 2003, 49(2): 225–231.
- [6] Tsai Yuh-ren and Huang Sin-jhih. PTS with non-uniform phase factors for PAPR reduction in OFDM systems[J]. *IEEE Communications Letters*, 2008, 12(1): 20–22.
- [7] Zhou Yang and Jiang Tao. A novel multi-points square mapping combined with PTS to reduce PAPR of OFDM signals without side information[J]. *IEEE Transactions on Broadcasting*, 2009, 55(4): 831–835.
- [8] Hou Jun, Ge Jian-hua, and Li Jing. Peak-to-average power ratio reduction of OFDM signals using PTS scheme with low computational complexity[J]. *IEEE Transactions on Broadcasting*, 2011, 57(1): 143–148.
- Daoud O and Alani O. Reducing the PAPR by utilisation of the LDPC code[J]. IET Communications, 2009, 3(4): 520-529.
- [10] Donmez F and Aygolu O. A trellis based PAPR reduction method for OFDM[C]. Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference, Kusadasi, Turkey, Apr. 28–30, 2004: 57–60.
- 李恩玉: 男, 1981 年生, 博士生, 研究方向为 OFDM、MIMO、 协同通信.
- 杨士中: 男,1937年生,中国工程院院士,教授,博士生导师, 研究方向为无线通信与测控技术.
- 吴皓威: 男, 1981年生, 讲师, 研究方向为宽带无线通信.