高阶调制的GLST系统中的检测算法

杨宜进 赵春明 史志华 巩晓群 (东南大学移动通信国家重点实验室 南京 210096)

摘 要:多天线无线通信系统的下行链路常采用GLST (Group Layered Space-Time architecture) 来增加接收分集 度。该文基于GLST系统的等效多输入多输出模型,分析了该系统在符号传输上的正交性,并针对该系统在使用高 阶调制时,传统的符号检测算法因计算复杂度太高而不可用的问题,提出了两种基于球形译码的低复杂度检测算法。 仿真结果表明,两种算法均能获得逼近最大似然检测器的性能。

关键词:无线通信;多天线;分集与复用;最大似然检测 中图分类号:TN929.5 文献标识码:A

文章编号: 1009-5896(2007)09-2208-04

Detectors for GLST Systems with Higher-order Modulations

Yang Yi-jin Zhao Chun-ming Shi Zhi-hua Gong Xiao-qun

(National Mobile Communications Research Lab, Southeast Univ., Nanjing 210096, China)

Abstract: GLST is usually used in the downlink of multi-antenna wireless communication systems to increase receiving diversity. In this paper, the transmission orthogonality is analyzed on the base of the system model. Considering that the complexity of the optimal detector is prohibitive, when a higher-order modulation is used, two algorithms are proposed based on sphere decoder to solve the problem. Simulation results show that both the proposed algorithms can approach the performance of the optimal detector.

Key words: Wireless communications; MIMO; Diversity and spatial multiplexing; ML Detection

1 引言

实际应用中的MIMO (Multiple-Input Multiple-Output) 无线通信系统,往往要求在争取空间复用增益的同时,确保 接收端能够获得足够的空间分集增益。于是同时采用空时编 码^[1]与分层传输^[2]两种技术的分组分层空时传输^[3-7] (Group Layered Space-Time architecture, GLST)方案得到重视。

本文将研究该传输方案下的符号检测算法。Zhao^[4]提出 了基于天线分组的ZF算法,MMSE算法和QR串行干扰抵消 算法;Lei^[6]和Prasad^[8]分别提出了一种类似于OSIC^[2]算法的 排序分组干扰抵消算法;以上所有这些检测算法均是先做符 号检测然后做空时解码,这样接收机的整体性能将在很大程 度上受制于前级符号检测器的精度。考虑到空时编码本身是 一种线性变换,Dai^[3,7]指出先对接收信号做线性变换(即提前 做空时解码),然后做符号检测可以获得更好的性能。Dai的 算法虽然改善了误码性能,但是没有解决好算法复杂度过高 的问题;由于它需要在每个天线分组之内做ML (Maximum Likelihood)检测,当采用高阶调制或者分组之内的天线数较 多时,其计算复杂度将是实际系统不能接受的。

注意到,球形译码^[9,10](Sphere Decoding, SD) 算法可 用于快速求解整数域的最小二乘问题,本文考虑将SD算法与 Dai的检测算法结合起来,从而将Dai的算法推广至高阶调制 的GLST中去。此外,本文还将从检测器的结构入手,给出 另外一种复杂度较低、性能更优的检测算法。

2 系统模型

考虑一个使用 N 根发送天线, M 根接收天线的GLST 系统,其结构框图如图1所示。在发送端,一串调制符号经 过串/并转换成为发送符号矢量,之后发送矢量被切分成两 段,每段归为一分组,然后做面向分组的Alamouti空时编码; 在接收端,先通过线性变换做空时解码,然后做符号检测。 为方便后面对接收机算法的推导,下面首先建立该系统的数 学模型。

2.1 等效模型的建立

记 $\boldsymbol{x} = [\boldsymbol{x}_1^T \ \boldsymbol{x}_2^T]^T \in \mathcal{Q}_{2^q}^N \notin 2^q$ -QAM调制的长度为 N 的 发送矢量, $\boldsymbol{H} \triangleq [h_{ij}] = [\boldsymbol{H}_{11} \ \boldsymbol{H}_{12}]$ 是信道矩阵, 且 $h_{ij} \sim \mathcal{CN}(0,1)$ i.i.d $\forall i = 1, \dots, M, \forall j = 1, \dots, N$, $\boldsymbol{Y} = [\boldsymbol{Y}_{11} \ \boldsymbol{Y}_{12}] \notin M \times 2$ 的接收矩阵; $\boldsymbol{n} \triangleq [n_{ij}]$ 是噪声矩阵, 且 $n_{ij} \sim \mathcal{CN}(0,\sigma^2)$ i.i.d $\forall i = 1, \dots, M, \forall j = 1, 2$;为简化问 题,这里假定信道为准静态信道,即矩阵 \boldsymbol{H} 在一个空时编码 块内部保持不变,且块与块之间的信道相互独立;并且认为 接收端对信道矩阵已知。那么,系统模型可以表示为

²⁰⁰⁶⁻⁰³⁻¹³ 收到,2006-09-28 改回 国家自然科学基金(60496311)资助课题

$$[\mathbf{Y}_{11} \ \mathbf{Y}_{12}] = [\mathbf{H}_{11} \ \mathbf{H}_{12}] \begin{bmatrix} \mathbf{x}_1 & -\mathbf{x}_2^* \\ \mathbf{x}_2 & \mathbf{x}_1^* \end{bmatrix} + \mathbf{n}$$
(1)

定义运算符 Vec(·) 表示将矩阵按列拉直成一个列向量,则

$$\operatorname{Vec}\{\boldsymbol{Y}\} = \begin{bmatrix} \boldsymbol{H}_{11} & \boldsymbol{H}_{12} \\ \boldsymbol{H}_{12}^* & -\boldsymbol{H}_{11}^* \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} + \operatorname{Vec}\{\boldsymbol{n}\}$$
(2)

将上式简记为

$$\boldsymbol{r} = \widetilde{\boldsymbol{H}}\boldsymbol{x} + \widetilde{\boldsymbol{n}} \tag{3}$$

这就是等效的MIMO系统模型。

2.2 正交性分析

Tarokh^[1]提出的空时块码有一个突出的优点,那就是它 能保证处于同一空时编码块内的不同符号以相互正交的形 式发送,这样就能通过简单的算法来实现最大似然译码。下 面来考察GLST传输方案是否也具有类似的正交性。

$$\widetilde{\boldsymbol{H}}^{\mathrm{H}}\widetilde{\boldsymbol{H}} = \begin{bmatrix} \boldsymbol{H}_{11}^{\mathrm{H}}\boldsymbol{H}_{11} + \boldsymbol{H}_{12}^{\mathrm{T}}\boldsymbol{H}_{12}^{*} & \boldsymbol{H}_{11}^{\mathrm{H}}\boldsymbol{H}_{12} - \boldsymbol{H}_{12}^{\mathrm{T}}\boldsymbol{H}_{11}^{*} \\ \boldsymbol{H}_{12}^{\mathrm{H}}\boldsymbol{H}_{11} - \boldsymbol{H}_{11}^{\mathrm{T}}\boldsymbol{H}_{12}^{*} & \boldsymbol{H}_{12}^{\mathrm{H}}\boldsymbol{H}_{12} + \boldsymbol{H}_{11}^{\mathrm{T}}\boldsymbol{H}_{11}^{*} \end{bmatrix}$$
(4)

由于 $\tilde{\boldsymbol{H}}^{\mathrm{H}}\tilde{\boldsymbol{H}}$ 不是对角块阵,所以各天线分组之间不具有相互 正交的特性。

3 接收机算法描述

由上一节的分析知道,这种GLST传输方案破坏了STBC 原有的正交特性;由于各个符号分组之间并不正交,这就增 加了从接收信号矩阵中检测发送符号的难度。下面讨论几种 有针对性的符号检测算法。

3.1 最大似然检测

由等效的系统模型式(3),知最大似然检测的表示式为
$$\hat{x}_{\text{ML}} = \arg \min_{x \in U^{N}} \left\| \boldsymbol{r} - \boldsymbol{\widetilde{H}} \boldsymbol{x} \right\|^{2}$$
 (5)

其中 Ω 是调制使用的星座图。使用贪婪搜索策略来寻找式(5) 的解是颇费运算量的,尤其是在星座图的大小 |Ω| 较大或者 符号块长度 N 较长的时候,因为它的运算复杂度高达 O (|Ω|^N)。球形译码算法是解决此类问题的有效办法,它通过 线性空间上的投影运算,将式(5)转化为一个半径限定的球形 区域内的最近点问题^[10]。这里限于篇幅,不对球形译码算法 做具体介绍。

3.2 基于分组的迫零检测

该算法是在Dai的GZF (Group Zero Forcing) 算法基础 上改造而成的,其基本思想是对接收矢量做投影变换,将其 它发送符号分组对当前的符号分组的干扰消除,具体过程如 下。令

$$\widetilde{\boldsymbol{H}} = \begin{bmatrix} \boldsymbol{H}_{G_i} \ \boldsymbol{H}_{\overline{G}_i} \end{bmatrix}$$
(6)

其中 H_{G_i} 是 \hat{H} 中对应于第 i 个发送符号分组的所有列, $H_{\bar{G}_i}$ 是从 \hat{H} 中扣除了 H_{G_i} 之后的剩余列。为了检测第 i 个发送符 号分组,本文构造以下投影矩阵:

$$\boldsymbol{P}_{G_i} = \boldsymbol{H}_{G_i}^{\mathrm{H}} \left(\boldsymbol{I} - \boldsymbol{H}_{\bar{G}_i} \left(\boldsymbol{H}_{\bar{G}_i}^{\mathrm{H}} \boldsymbol{H}_{\bar{G}_i} \right)^{-1} \boldsymbol{H}_{\bar{G}_i}^{\mathrm{H}} \right)$$
(7)

对接收矢量 r 做投影变换, 可以得到:

$$\boldsymbol{r}_{i} = \boldsymbol{P}_{G_{i}}\boldsymbol{r} = \boldsymbol{P}_{G_{i}}\boldsymbol{H}_{G_{i}}\boldsymbol{x}_{i} + \boldsymbol{P}_{G_{i}}\boldsymbol{n}$$
(8)

令 $\boldsymbol{Q}_i^{-1} = \boldsymbol{P}_{G_i} \boldsymbol{H}_{G_i} \perp \boldsymbol{n}_i = \boldsymbol{P}_{G_i} \boldsymbol{n}$,则噪声项 \boldsymbol{n}_i 的方差为(注意: \boldsymbol{Q}_i 是正定阵,证明从略)

$$\operatorname{Var}\left\{\boldsymbol{n}_{i}\right\} = E\left\{\boldsymbol{n}_{ii}\boldsymbol{n}_{ii}^{\mathrm{H}}\right\} = 2\sigma^{2}\boldsymbol{Q}_{i}^{-1}$$

$$\tag{9}$$

所以,针对式(8)的最大似然检测表示式为

$$\tilde{\boldsymbol{x}}_{i} = \arg\min_{\boldsymbol{x}_{i}\in\Omega^{L}} \left(\boldsymbol{r}_{i} - \boldsymbol{Q}_{i}^{-1}\boldsymbol{x}_{i}\right)^{\mathrm{H}} \boldsymbol{Q}_{i} \left(\boldsymbol{r}_{i} - \boldsymbol{Q}_{i}^{-1}\boldsymbol{x}_{i}\right)$$
(10)

其中 *L* 是向量 \boldsymbol{x}_i 的长度。为了方便使用球形译码算法求解, 需要将其转成类似于式(5)的形式。注意到, \boldsymbol{Q}_i 是Hermite阵, 即 $\boldsymbol{Q}_i = \boldsymbol{Q}_i^{\mathrm{H}}$ 。根据Schur分解定理^[11],存在一个酉阵 \boldsymbol{F} 和一 个实对角矩阵 $\boldsymbol{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_L) (\lambda_i, 1 \le i \le L$ 是矩阵 \boldsymbol{Q}_i 的 特征值)使得 $\boldsymbol{Q}_i = \boldsymbol{F}^{\mathrm{H}} \boldsymbol{\Lambda} \boldsymbol{F}$ 。这样式(10)可写成

$$\tilde{\boldsymbol{x}}_{i} = \arg\min_{\boldsymbol{x}_{i} \in \Omega^{L}} \left\| \sqrt{\boldsymbol{\Lambda}} \boldsymbol{F} \boldsymbol{r}_{i} - \sqrt{\boldsymbol{\Lambda}}^{-1} \boldsymbol{F} \boldsymbol{x}_{i} \right\|^{2}$$
(11)

此时,可以直接使用球形译码算法来求解x_i。

3.3 串行级联检测

在上一小节中,对不同的符号分组的检测是并行完成的;在这一小节中,对不同的符号分组的检测是并行完成的;在这一小节中,将给出一种串行的级联检测(Serial Concatenated Detectors, SCD)算法。该算法的特点在于它通过干扰抵消来消除邻近的符号分组所造成的干扰,与GZF 算法相比,它无需构造投影矢量,也无需做Schur分解。

图2给出了这种级联检测算法的结构。首先,将式(5)写成

$$\begin{bmatrix} \hat{\boldsymbol{x}}_1 \\ \hat{\boldsymbol{x}}_2 \end{bmatrix} = \arg \min_{\boldsymbol{x}_1, \boldsymbol{x}_2 \in \Omega^{N/2}} \|\boldsymbol{r} - \boldsymbol{H}_A \cdot \boldsymbol{x}_1 - \boldsymbol{H}_B \cdot \boldsymbol{x}_2 \|^2$$
(12)

其中 H_A 和 H_B 分别是 \widetilde{H} 的前N/2列和后N/2列。

为了使用式(12)完成对 \boldsymbol{x}_1 的检测,需要一个关于 \boldsymbol{x}_2 的初始估计 $\tilde{\boldsymbol{x}}_2 \in \Omega^{N/2}$ 。 $\tilde{\boldsymbol{x}}_2$ 可由迫零预检测获得。接下来,做一次部分干扰消除 $\boldsymbol{r}_2 = \boldsymbol{r} - \boldsymbol{H}_B \cdot \tilde{\boldsymbol{x}}_2$ 。那么 \boldsymbol{x}_1 可以通过求解

$$\hat{\boldsymbol{x}}_1 = \arg\min_{\boldsymbol{x}_1 \in \Omega^{N/2}} \|\boldsymbol{r}_2 - \boldsymbol{H}_A \cdot \boldsymbol{x}_1\|^2$$
(13)

来得到;然后再做一次部分干扰消除 $\mathbf{r}_1 = \mathbf{r} - \mathbf{H}_A \cdot \hat{\mathbf{x}}_1$,那么 \mathbf{x}_2 可以通过求解

$$\hat{\boldsymbol{x}}_{2} = \arg\min_{\boldsymbol{x}_{0} \in \Omega^{N/2}} \left\| \boldsymbol{r}_{1} - \boldsymbol{H}_{B} \cdot \boldsymbol{x}_{2} \right\|^{2}$$
(14)

来获得。最后将两级球形译码的输出组合在一起,得到算法 的输出结果。

为了减少干扰消除过程中的错误传播,可以在对发送符 号块**x**做分割之前,先对它的内部元素做一次换序,以便使 得错误概率较小的符号引入的干扰被优先消除,具体做法如 下:

由文献[2]知,各发送天线上的信噪比可由式(15)来定义:

$$= \left\| \left(\left(\widetilde{\boldsymbol{H}}^{\mathrm{H}} \widetilde{\boldsymbol{H}} \right)^{-1} \widetilde{\boldsymbol{H}}^{\mathrm{H}} \right)_{i} \right\|^{-2}$$
(15)

k

图2 级联的检测器

其中 $1 \le i \le N$ 且(·)_i表示矩阵的第*i*行。在分割*x*之前,先对 k_i 按照由小到大的顺序排序,假设有 $k_{n_1} \le k_{n_2} \le \cdots \le k_{n_N}$, 其中 { n_1, n_2, \cdots, n_N } 是 { $1, 2, \cdots, N$ } 的某个换序序列。那么 x_1, x_2 和新的 \hat{H} 由以下两式来定义,其中 $c_{n_j}(1 \le j \le N)$ 是 原矩阵 \hat{H} 的第 n_j 列

$$\begin{bmatrix} x_{n_1} \ x_{n_2} \ \cdots \ x_{n_N} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{x}_1^{\mathrm{T}} & \boldsymbol{x}_2^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$$
(16)

$$\widetilde{\boldsymbol{H}} = \left[\boldsymbol{c}_{n_1} \boldsymbol{c}_{n_2} \cdots \boldsymbol{c}_{n_N} \right] \tag{17}$$

4 算法复杂度分析

2210

下面首先来比较最大似然检测(MLD),基于分组的迫零 检测(GZF)及串行级联检测(SCD) 3种检测算法在进入球形 译码的搜索状态之前所花费的浮点实运算次数(单位:flop)。 至于3种算法在进入球形译码的搜索状态之后的计算复杂 度,将在仿真结果中给出。

表1给出了各算法在不同阶段的计算复杂度。表中的*M* 和*N*分别代表接收天线数和发送天线数,*T*是一个空时编码 块所占用的时隙长度。由表1可看到,GZF算法的运算量主 要花费在对投影矢量的构造以及对 *Q*_i矩阵的Schur分解上 面,而SCD算法的运算量主要花费在球形译码的初始化上 面。表2给出了各算法总的计算复杂度,表中同时列出了在 *MT* = *N* = 6 和 *MT* = *N* = 8 两种情况下的运算量。由表2 可知,MLD的复杂度最高,GZF次之,SCD的复杂度最低。

算法	- おけ
MLD	$40/3N^3 + (16MT + 4)N^2$
	6480 $(MT = N = 6)$
	15270 $(MT = N = 8)$
GZF	$17/6N^3 + (14MT + 4)N^2 + [6(MT)^2 + 8MT]N$
	5364 $(MT = N = 6)$
	12460 $(MT = N = 8)$
SCD	$10/3N^{3} + (8MT + 9/2)N^{2} + 20MTN$
	3330 $(MT = N = 6)$
	7371 $(MT = N = 8)$

表 2 进入搜索状态之前的复杂度总计

5 仿真实验

本文将在一个采用Gray映射的 2^q -QAM (q = 4,6)调 制,8根发送天线,8根接收天线的GLST系统中,考察MLD 算法,GZF算法和SCD算法在平坦瑞利衰落信道下各自的误 比特性能与计算复杂度。这里的复杂度定义为各算法在SD 进入搜索状态之后,每完成对一个发送矢量的检测需要访问 的网格坐标次数的平均值,简记为ANS (Average Number of Searched sublattices per symbol vector)。MLD算法中的球 形译码器采用FP算法^[10],初始半径定为 $\sqrt{2N\sigma}$,如果在该半径之内未能找到任何网格点,则令搜索半径r = 1.6r重新开始搜索。GZF算法和SCD算法中的球形译码器均采用 Rekaya的SE算法^[9]。

图3(a)与图3(c)给出了3种算法在16-QAM与64-QAM两 组调制方式下的误比特 (Bit Error Rate, BER)性能曲线。 可以看到,SCD算法性能要好于GZF算法,并逼近最优检测 算法MLD的性能。GZF算法性能逊色于SCD算法的原因在于 投影运算在消除天线分组之间的干扰的同时,也放大了噪 声。图3(b)与图3(d)给出了3种算法在搜索阶段的复杂度曲 线。可以看出,在信噪比比较低的区域,GZF算法的复杂度 略高于SCD算法,而MLD的复杂度要明显高于另外两种算 法。造成算法之间复杂度差异的主要原因在于球形译码器的 收敛速度;GZF算法和SCD算法虽然都用了两个球形译码 器,但每个球形译码器的搜索深度都只是MLD算法的一半。 因此,GZF算法和SCD算法中的球形译码器的收敛速度要明 显快于MLD算法中球形译码器的收敛速度。

6 结束语

本文分析了GLST系统在符号传输上的正交性。分析结 果表明,GLST系统的各发送符号分组之间不具备相互正交 的特性。为了解决高阶调制的GLST系统中存在的检测算法 复杂度太高的问题,本文将传统的检测算法与球形译码算法 结合起来,提出了一种并行结构的GZF算法;随后本文又从 检测算法的结构入手,提出了一种同样基于球形译码器的具

表1 进入搜索状态之前的各阶段复杂度

算法	预检测	排序	干扰消除	SD初始化
MLD	0	0	0	$40/3N^3 + 16MTN^2 + 4N^2$

GΖ	F $7/2N^3 + 6MTN^2 + 6(MT)^2N$	0		0	$-2/3N^{3} + 4(2MT + 1)N^{2} + 8MTN$	
\mathbf{SC}	D $4N^3$	$1/2N^2 + 4MTN$		8MTN	$-2/3N^{3} + 4(2MT + 1)N^{2} + 8MTN$	
有 串 是 之 法 近 最 [1]	行级联结构的SCD算法。从算法的计算 在球形译码器进入搜索状态之前,还是 后,GZF算法与SCD算法的复杂度均要 。从误比特性能的仿真结果来看,两种 优检测器的性能,且SCD算法略好于G 参考文献 Tarokh V, Jafarkhani H, and Calderbank block codes from orthogonal designs[J]. <i>Inform. Theory</i> , 1999, 45(5): 1456-1467.	复杂度来看,无 8 在其进入搜索状 [7] 要明显低于MLD 算法均能获得逼 ZF算法。 [8] A R. Space-time <i>IEEE Trans. on</i> [9]	8(8):]]	526–528. Dai L, Sfar S, space-time arch Global Telecor USA, 2004, 5: 2 Prasad N and decodable laye Asilomar Conf. Rekaya G and decoders for t	and Letaief K B. A quasi-orthogonal group hitecture for higher diversity gains[C]. IEEE mmun- ications Conference, Dallas Texas, 2931–2935. d Varanasi M K. Optimum efficiently ered space-time block codes[C]. Proc. 35th . Signals, Syst., Pacific Grove, CA, 2001: 227. d Belfiore J C. Complexity of ML lattice the decoding of linear full rate space-time	
[2]	 Golden G D, Foschini G J, and Valenz Detection algorithm and initial laboratory V-BLAST space-time communication <i>Electron. Lett.</i>, 1999, 35(1): 14–15. Dai L, Sfar S, and Letaief K B. An effi 	uela R A, <i>et al.</i> . v results using the architecture[J]. [10 cient detector for	 codes[C]. IEEE International Symposium on Information Theory (ISIT), Yokohama, Japan, 2003: 206. [10] Fincke U and Pohst M. Improved methods for calculating vectors of short length in a lattice, inlcuding a complexity analysis[J]. Math. Computat., 1985, 44(170): 463–471. 			
IEE	combined space-time coding and layer <i>E Trans. on Commun.</i> , 2005, 53(9): 1438-1-	ed processing[J]. [1. 442.	1]	Horn R A and . University Pres	Johnson C R. Matrix Analysis[M].Cambridge ss, 1985: 79–80.	
[4] <i>IEE</i>	Zhao L and Dubey V K. Detection schen block code and spatial multiplexing con <i>E Commun. Lett.</i> , 2005, 9(1): 49–51.	nes for space-time nbined system[J]. 杨	宜进	 进: 男,1981 基带信号 周: 男,1950 	年生,博士生,研究方向为宽带移动通信中的 处理技术. 年生,教授,博士生导师,主要研究方向为通	
[5]	Tarokh V, Nagub A, and Seshadri N, array processing and space-time coding[J] Inform. Theory, 1999, 45(4): 1121–1128.	et al Combined №A. . IEEE Trans. on	中央	 元, 1939 信理论、利 术及通信 	十王, xxx, 两工工 ym, 工 ym, 工 ym, 几 / 问 / 通 移动通信系统、纠错编码技术、自适应滤波技 专用集成电路设计.	
[6]	Dai Y, Lei Z, and Sun S. Ordered arrs space-time coded systems[J]. <i>IEEE Com</i>	ay processing for 史 mun. Lett., 2004,	心华	≕ 为,1980 中的预编码	平生,两工生,土要ຫ充力问为蒐带移动遇信 码技术.	