面向电网业务质量保障的5G高可靠低时延通信资源调度方法

丰 雷 谢坤宜 朱 亮 邱雪松 郭少勇* (北京邮电大学网络与交换技术国家重点实验室 北京 100876)

摘 要: 该文研究面向电网业务质量保障的5G 高可靠低时延通信(URLLC)的资源调度机制,以高效利用低频段 蜂窝通信系统内有限的频谱和功率资源来兼顾电力终端传输速率和调度时延、调度公平性,保障不同电力业务的 通信质量(QoS)。首先,基于URLLC的高可靠低时延传输特性,建立电力终端多小区下行传输模型。然后,提 出面向系统下行吞吐量最大化的资源分配问题模型并对其进行分步求解,分别提出基于定价机制与非合作博弈的 功率分配算法和基于调度时延要求的改进比例公平算法(DPF)动态调度信道资源。仿真结果表明,提出的资源 调度方法能在保证一定传输可靠性和公平性的条件下降低电力终端调度时延,满足不同业务等级的QoS需求,与 已知算法对比有一定的优越性。

关键词: 高可靠低时延通信; 电网业务质量保障; 信道资源调度; 功率分配; 非合作博弈

中图分类号: TN929.5 文献标识码: A 文章编号: 1009-5896(2021)12-3418-09 DOI: 10.11999/JEIT210509

5G Ultra-Reliable and Low Latency Communication Resource Scheduling for Power Business Quality Assurance

FENG Lei XIE Kunyi ZHU Liang QIU Xuesong GUO Shaoyong

(State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract: The resource scheduling method of 5G URLLC (Ultra-Reliable and Low Latency Communication) is studied in this paper to assure the Quality of Service (QoS) of various power business, which utilizes the limited spectrum and power in low-band cellular communication system to meet the requirement of power terminal about transmission rate, scheduling delay and fairness in an efficient manner. Firstly, based on the high reliability and low latency characteristics of URLLC, a multi-cell downlink system model is built. Then, a resource allocation problem model for maximizing downlink throughput is proposed and solved step by step. Power allocation algorithm bases on pricing mechanism and non-cooperative game and an Delay-based Proportional Fair (DPF) algorithm is designed to schedule channel resource dynamicly. Simulation results show that the proposed resource scheduling method can reduce the scheduling delay of power terminals under the constraints of transmission reliability and fairness while meeting the different QoS requirements. The proposed method outperforms some known algorithms.

Key words: Ultra-Reliable and Low Latency Communication (URLLC); Quality of Serivce (QoS) of power business; Channel resource scheduling; Power allocation; Non-cooperative game

1 引言

在能源和电力需求快速增长的驱动下,电网应 用对无线网络提出了更加严苛的承载要求。精准负 荷控制、配电自动化以及巡检控制等电力业务要求

基金项目: 国家重点研发计划(2020YFB0906003)

通信低时延保障的同时,还期望对关键控制信息提供高可靠性传输。第5代移动通信(5G)的三大技术之一——高可靠低时延通信(Ultra-Reliable and Low Latency Communication, URLLC)可以很好地满足各类业务对可靠性、时延等性能的差异化需求。URLLC技术结合中低频段传输能够更好地减少传输损耗、保证网络良好覆盖,然而,随着通信业务规模不断扩大,有限的频谱资源变得越来越紧缺。合理分配网络频率和功率资源,满足不同业务的差异化服务质量(Quality of Serivce, QoS)要求下

收稿日期: 2021-06-03; 改回日期: 2021-10-23; 网络出版: 2021-11-09 *通信作者: 郭少勇 syguo@bupt.edu.cn

Foundation Item: The National Key R&D Program of China (2020YFB0906003)

抑制小区间干扰,提高系统可靠性和传输效率已成为5G承载电力业务的关键技术问题。

目前,针对不同电网业务的差异化QoS需求, 文献[1,2]引入了有效带宽的概念,在满足排队时 延、传输错误率和排队错误率等性能需求的条件 下,分配带宽资源以及控制发射功率,并提出主动 丢包机制,但其应用在单一小区场景,没有对多小 区间的资源进行联合调度。文献[3]通过最优化功率 来使多小区系统的吞吐量最大化,但是工作在广播 业务场景下。文献[4]研究了在频谱以及功率约束条 件下的时延最小化问题,但未考虑传输可靠性需 求。文献[5]在车联网场景下提出建立关于可靠性和 时延的函数,但并非面向智能电网场景下的资源调 度,无法完全适配电力差异化QoS需求。因此本文 建立了面向智能电网场景的多小区多电力终端资源 分配模型,在考虑不同业务可靠性、时延等需求的 条件下满足5G URLLC系统吞吐量最大化。

目前大多文献采取分步优化算法来对于上述资 源分配问题模型进行求解。文献[6]采用时间片轮询 将子载波循环分配给所有用户,牺牲较多系统吞吐 量以满足用户公平性;文献[7]采用比例公平兼顾了 系统公平性和吞吐量,但没考虑业务的时延需求; 文献[8]提出EXP/PF调度,实现对实时和非实时业 务用户之间信道资源的实时控制,保证实时业务用 户的时延限制。功率控制方面,文献[9]和文献[10] 提出基于定价的非合作功率分配博弈,但它们都基 于最大载干比原则对资源进行调度,无法保证公平 性。文献[11]利用α比例公平算法动态调节比例因子 调节系统公平性,但未考虑业务差异化QoS需求。 上述这些方法在电力多优先级业务的差异化QoS需 求场景中适用性均存在不足。

因此本文考虑不同电力业务终端的QoS需求, 通过动态更新终端的优先级来调度信道资源。然 后,引入基于定价机制的非合作博弈算法优化功率 分配策略,降低小区间干扰,提升通信可靠性。仿 真结果表明算法收敛速度较快,在保证一定系统公 平性和传输可靠性条件下提高了系统吞吐量,相较 于上述经典资源调度算法能降低平均调度时延,满 足不同电力业务终端的QoS需求。

2 URLLC下行链路资源分配模型

2.1 系统传输模型

假设该系统由N个不同的蜂窝小区构成,记为 集合 $N = \{n | n = 1, 2, ..., N\}$,每个小区由一个位于小区 中心的基站和K个随机分布的电力业务终端构成, 其中电力业务终端记为集合 $K = \{k | k = 1, 2, ..., K\}$ 。 调度时隙t内小区各资源块仅能调度给一个终端, 小区内部频谱资源在时域内是正交的;但不同小区 均采用相同频率,因此各小区被分配到同一资源块 的终端间存在同频干扰。每个小区有M个资源块, 记为 $M = \{m | m = 1, 2, ..., M\}$ 且资源块的数量小于 小区内的终端数量,即M < K,且单位资源块的 频谱带宽为B。

小区n终端k在资源块m的信干噪比(Signal to Interference plus Noise Ratio, SINR)为

$$\gamma_{mk}^{n}(p_m^n) = \frac{G_{mk}^{n}p_m^n}{\sum_{l=1, l \neq n}^{N} G_{mk}^{l}p_m^l + \sigma^2}$$
(1)

其中, G_{mk}^n 为小区n终端k在资源块m的信道增益, p_m^n 表示小区n中资源块m被分配的下行发射功率。 $\sigma^2 = N_0 B$, N_0 为噪声单边功率谱密度。

常见无线系统基于信息论准则研究高效传输足 够长的数据包,而URLLC要在满足极低时延和极 高可靠性下传输关键性指令(一般为短包),传输错 误率对可靠性的影响不能忽略,因而香农容量公式 不能完全反映URLLC传输需求。设分配给传输每 个数据包的带宽小于系统相关带宽,在准静态平坦 衰落信道,发送端和接收端都已知信道状态信息, 小区n资源块m调度给终端下的最大可达吞吐量^[1,2,12-19] 为(单位bit/s)

$$R_{mk}^{n}(p_{m}^{n}) = B\{\log_{2}[1+\gamma_{mk}^{n}(p_{m}^{n})] - \sqrt{\frac{V_{k}}{n_{0}}}f_{Q}^{-1}(\varepsilon_{k}^{d})\}$$
(2)

为了在一定数据包长度no条件下满足可靠性需 求,在传统香农公式中引入误码率ε^d衡量系统可靠 性,考虑可靠性的吞吐量与香农信道容量关于 $1/\sqrt{n_0}$ 成正比衰减。 $V_k = 1 - \frac{1}{[1 + \gamma_{mk}^n(p_m^n)]^2}$ 称信 道色散[12],表示相较于同等容量的确定性信道的信 道随机性变化,上界为1。URLLC场景要求高SINR 保证高可靠和低时延, V_k可近似为1。n₀是传输数 据包长度, $Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt$, ε_k^d 为下行链 路译码错误概率。为满足URLLC场景下的业务低 时延需求,传输过程应避免重传带来的时延,因此 可以为 ε_k^d 设置一个较低的阈值降低第1次传输的错 误概率,在给定包长度下 $\sqrt{\frac{V_k}{n_0}}f_Q^{-1}(\varepsilon_k^d)$ 可视为常数 项。式(2)在带宽和发射功率上不是共同凹的,因 此资源管理将变得更加复杂。本文考虑在指定的错 误概率要求(可靠性要求)下进行数据速率的计算。 令小区n终端k的总吞吐量为

$$R_{k}(p_{m}^{n}) = \sum_{m=1}^{M} a_{mk}^{n} R_{mk}^{n}(p_{m}^{n})$$
(3)

其中, a_{mk}^{n} 为0-1规划的决策变量,表示小区n的资源块m与终端k之间的映射关系,即 a_{mk}^{n} = 1表示小区n的资源块m分配给了终端k,反之, a_{mk}^{n} = 0表示小区n的资源块m没有分配给终端k。

则系统下行总容量为下行各小区所有终端的吞 $\max C(a_{mk}^n, p_m^n)$

$$C(a_{mk}^{n}, p_{m}^{n}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \sum_{m=1}^{M} a_{mk}^{n} R_{mk}^{n}(p_{m}^{n}) \qquad (4)$$

2.2 问题描述

本文以最大化系统总吞吐量为目标,如目标函数式(5)所示,并满足发射功率、时延、可靠性等约束条件,如式(5a)—式(5e)所示。

$$\text{s.t.} \begin{cases} \sum_{m=1}^{M} p_m^n \leq P_{\max}, \forall n \in \{1, 2, \cdots, N\} \quad (5a) \\ R_{mk}^n(p_m^n) \geq 0, \forall n \in \{1, 2, \cdots, N\}, \forall k \in \{1, 2, \cdots, K\} \quad (5b) \\ \sum_{k=1}^{K} a_{mk}^n = 1, \forall n \in \{1, 2, \cdots, N\}, \forall m \in \{1, 2, \cdots, M\} \quad (5c) \\ \varepsilon_k^d \in [10^{-7}, 10^{-4}] \quad (5d) \\ d_k^n \leq D_k^n, \forall n \in \{1, 2, \cdots, N\}, \forall k \in \{1, 2, \cdots, K\} \quad (5e) \end{cases}$$

其中,约束条件式(5a)保证各小区资源块分配的功率之和不应高于小区基站下行发射功率的最大值;约束条件式(5b)保证各终端速率是一个非负值;约束条件式(5c)使得各资源块一个时隙内只能调度给一个终端;约束条件式(5d)给出译码错误率的范围,确保系统可靠性;约束条件式(5e)保障各电力业务终端的调度时延 *d*_k满足其业务的时延需求*D*_kⁿ。

式(5)是一个NP-hard的非线性约束优化问题,其最优点需将信道和功率分配的组合一一列举,复杂度和开销极大,难以实现。本文从信道资源调度和功率分配两个步骤分步对该问题优化求解。

从频率角度看,各小区获得同一资源块(Resource Block, RB)的电力终端之间存在同频干扰,由于每个 终端都是自私的,都希望获得更高的下行发射功率以最大化自身吞吐量,但这种利己行为将对使用同一资 源块的其他小区终端造成更大的干扰,进而降低相邻小区终端的吞吐量,因此,寻求系统吞吐量最大问题 可以表示成博弈问题,将不同小区间复用同一资源块的终端视为互为博弈的参与者,为这些终端选择合适 的博弈策略,使资源块的功率分配达到均衡状态,来最大化该资源块的吞吐量。通过最大化所有资源块的 吞吐量来满足系统整体吞吐量的最大化,极大降低了优化问题求解的复杂度。各资源块对应一个独立的博 弈求解过程,问题模型由式(5)简化为

$$\max \sum_{n=1}^{N} \sum_{k=1}^{K} a_{mk}^{n} R_{mk}^{n}(p_{m}^{n}), \forall m \in \{1, 2, \cdots, M\} \\
\begin{cases} \sum_{m=1}^{M} p_{m}^{n} \leq P_{\max}, \forall n \in \{1, 2, \cdots, N\} & \text{(6a)} \\
R_{mk}^{n}(p_{m}^{n}) \geq 0, \forall n \in \{1, 2, \cdots, N\}, \forall k \in \{1, 2, \cdots, K\} & \text{(6b)} \\
\end{cases} \text{ s.t. } \begin{cases} \sum_{k=1}^{K} a_{mk}^{n} = 1, \forall n \in \{1, 2, \cdots, N\}, \forall k \in \{1, 2, \cdots, M\} & \text{(6c)} \\
\sum_{k=1}^{K} a_{mk}^{n} = 1, \forall n \in \{1, 2, \cdots, N\}, \forall m \in \{1, 2, \cdots, M\} & \text{(6c)} \\
e_{k}^{d} \in [10^{-7}, 10^{-4}] & \text{(6d)} \\
d_{k}^{n} \leq D_{k}^{n}, \forall n \in \{1, 2, \cdots, N\}, \forall k \in \{1, 2, \cdots, K\} & \text{(6e)} \\
\end{cases} \text{ for a product of the state of$$

先级为

3 信道调度与功率分配算法

3.1 基于电力终端优先级的动态资源调度

3.1.1 终端的优先级及其动态更新

本文提出一种基于调度时延要求的改进比例公 平算法(Delay-based Proportional Fair algorithm, DPF),将各电力终端业务的调度时延要求、终端 实时的信道条件及终端已获平均资源等作为终端优

$$\hat{Z}_{n,k}(t) = \frac{z_{n,k}(t)}{\bar{Z}_{n,k}(t)} \times \frac{1}{D_k^n} = \frac{z_{n,k}(t)}{\frac{1}{W} \sum_{i=t-W}^{t-1} Z_{n,k}(i)} \times \frac{1}{(\alpha_k^n D_k^n)^r}$$
(7)

W是一个调度时间窗口所含的调度时隙数, $z_{n,k}(t)$ 为调度时隙t小区n终端k的预计瞬时速率, $Z_{n,k}(t)$ 表示终端实际速率, D_k^n 是终端的调度时延 要求,表示该终端业务数据期望在指定时隙数内调 度完成, α_k^n 为各终端的时延需求权值,r是系统时 延指数因子。

3.1.2 算法步骤

(1)设定各电力终端速率为R₀,作为初始速率;

(2) 调度时隙 t_0 , 各小区a独立进行信道资源 调度。计算 t_0 前W轮调度各终端b的平均速率: $R_{\text{ave}}(a, b, t_0) = \frac{1}{W} \sum_{t=t_0-W}^{t_0-1} R(a, b, t);$

(3)假设各终端都调度到一个资源块且功率均 分,计算各终端预计可得瞬时速率 $R_{\exp}(a,b,t_0)$;

N

(4)计算终端优先级: pri
$$(a, b, t_0) = \frac{R_{\exp}(a, b, t_0)}{R_{\operatorname{ave}}(a, b, t_0)}$$
× $\frac{1}{(\alpha_k^n D_k^n)^r}$;

(5)各小区根据终端优先级进行降序排序,将 小区M个资源块依次调度给优先级最高的M个终端。

$t = t_0$ 的信道资源调度完毕,进行功率分配。

3.2 基于定价机制的非合作功率分配博弈3.2.1 定价机制的引入

在对各小区终端进行优先级排序并分配信道资源后,需为得到信道资源的终端进行功率分配,使 得各资源块的吞吐量达到最大,由此最大化系统总 吞吐量,表示调度到同一个资源块的所有终端的吞 吐量之和,由式(6)得到简化后的目标函数式为

$$\max \sum_{n=1}^{M} R_{\mu_{k}}^{n}(p_{m}^{n}), \forall m \in \{1, 2, \cdots, M\}$$

s.t.
$$\begin{cases} \sum_{m=1}^{M} p_{m}^{n} \leq P_{\max}, \forall n \in \{1, 2, \cdots, N\} \\ R_{\mu_{k}}^{n}(p_{m}^{n}) \geq 0, \forall n \in \{1, 2, \cdots, N\}, \forall k \in \{1, 2, \cdots, K\} \ (8b) \\ d_{h}^{n} < D_{h}^{n}, \forall n \in \{1, 2, \cdots, N\}, \forall k \in \{1, 2, \cdots, K\} \ (8c) \end{cases}$$

其中, $R_{\mu_k}^n(p_m^n)$ 为小区n资源块m所调度终端的下行 吞吐量。考虑多小区同频干扰问题,求解式(8)的 最优解是一个高阶求导最优化问题,计算复杂度极 高且不一定有解。因此本文引入非合作博弈,将各 资源块的功率分配问题看成独立的非合作博弈过 程。在非合作博弈中各终端作为博弈参与者都是自 私的,均以最大化各自效用为目标进行功率策略的 选择。因此引入定价机制^[9,10],使终端在功率策略 的选择上需要同时考虑自身效用和对应付出的代 价,即自身产生同频干扰的影响,实现功率控制和 避免恶性竞争。 令博弈过程表示为 $G_m = [N, \{P_m\}, \{U_m\}]$,其 中, $N = \{u_m^1, u_m^2, \dots, u_m^N\}$ 为资源块加在各小区调度 的终端集合, $P_m = \{p_m^1, p_m^2, \dots, p_m^N\}$ 为功率策略集, U_m 为终端净效用集。

终端*n*的功率策略空间可表示为 $p_m^n = [(p_m^n)^{\min}, (p_m^n)^{\max}], (p_m^n)^{\min} \in 1$ 。 $(p_m^n)^{\max} = \frac{P_{\max}}{M}, 即小区内所有资源块均分得到基站最大发射功率。该策略空间是闭的有界凸集。$

终端净效用函数定义为该终端的效用函数与其 定价函数之差

$$U_{mk}^{n}(p_{m}^{n}) = B \left\{ \log_{2} \left[1 + \frac{G_{mk}^{n} p_{m}^{n}}{\tau \left(\sum_{l=1, l \neq n}^{N} G_{mk}^{l} p_{m}^{l} + \sigma^{2} \right)} \right] - c_{0} \right\} - c_{k}^{n} \cdot p_{m}^{n}$$
(9)

其中,在给定包长度下 $\sqrt{\frac{V_k}{n_0}}f_Q^{-1}(\varepsilon_k^d)$ 可视为常数项, 即 $c_0 = \sqrt{\frac{V_k}{n_0}}f_Q^{-1}(\varepsilon_k^d)$; 定价函数 $c_m^n(p_m^n) = c_k^n \cdot p_m^n$, c_k^n 为定价因子,表示终端获得单位下行发射功率应 付出的代价。在博弈过程 G_m 中,参与博弈的各终 端均以最大化自身净效用为目标。各终端的最优功 率解即非合作功率博弈的最佳响应为max $U_{mk}^n(p_m^n)$ 。

3.2.2 最佳响应求解与纳什均衡

定理1 功率分配博弈G_m存在纳什均衡点。

证明 若满足以下条件, G_m存在纳什均 衡点:

(1)终端*n*的功率策略空间 $p_m^n = [(p_m^n)^{\min}, (p_m^n)^{\max}]$ 是非空有界的闭凸集;

(2)终端n的净效用函数 $U_{mk}^{n}(p_{m}^{n})$ 在其功率策略 p_{m}^{n} 上是连续的;且在 p_{m}^{n} 上拟凹。

条件(1)显然成立。而 $U_{mk}^n(p_m^n)$ 在 p_m^n 上连续可导。 下证拟凹性。

由式(9),净效用函数对功率p_mⁿ的1阶导为

 $\frac{\partial U_{mk}^n(p_m^n)}{\partial p_m^n} = \frac{BG_{mk}^n}{\left[\tau\left(\sum_{l=1,l\neq n}^N G_{mk}^l p_m^l + \sigma^2\right) + G_{mk}^n p_m^n\right] \cdot \ln 2} - c_k^n$ (10)

由式(10),净效用函数对功率p_m的2阶导为

$$\frac{\partial^2 U_{mk}^n(p_m^n)}{\partial^2 p_m^n} = \frac{-BG_{mk}^n{}^2}{\left[\tau\left(\sum_{l=1,l\neq n}^N G_{mk}^l p_m^l + \sigma^2\right) + G_{mk}^n p_m^n\right]^2 \cdot \ln 2}$$
(11)

显然 $\frac{\partial^2 U_{mk}^n(p_m^n)}{\partial^2 p_m^n} < 0$, $U_{mk}^n(p_m^n) \neq p_m^n$ 上是凹函数, 也是其拟凹函数, 条件(2)也满足, 因此博弈 G_m 存在纳什均衡点。 证毕

令终端净效用1阶导为0,即 $\frac{\partial U_{mk}^n(p_m^n)}{\partial p_m^n}=0$,得

$$p_m^n = \frac{B}{c_k^n \ln 2} - \frac{\tau \left(\sum_{l=1, l \neq n}^N G_{mk}^l p_m^l + \sigma^2\right)}{G_{mk}^n} \qquad (12)$$

可证终端净效用函数单调性为先增后减,在 1阶导为0处取最大值。实际应用中要求发射功率满 $\mathcal{E}0 < p_m^n < \frac{P_{\max}}{M}$,速率 $R_{mk}^n(p_m^n) \ge 0$,由这些限制 条件和式(2)、式(12)可推出终端定价因子范围如 式(13)所示,对各资源块所调度终端的定价因子范 围的上限取交集,下限取并集,可得该资源块的定 价因子合理区间。根据对应的系统性能来决策各时 隙各资源块的最佳定价因子。

$$p_m^{n*} = \begin{cases} (p_m^n)^{\min} = \frac{(2^{c_0} - 1) \cdot \tau \left(\sum_{l=1, l \neq n}^N G_{mk}^l p_m^l + \sigma^2\right)}{G_{mk}^n} \\ \frac{B}{c_k^n \ln 2} - \frac{\tau \left(\sum_{l=1, l \neq n}^N G_{mk}^l p_m^l + \sigma^2\right)}{G_{mk}^n}, \\ (p_m^n)^{\min} \le p_m^n \le (p_m^n)^{\max} \\ (p_m^n)^{\max} = \frac{P_{\max}}{M}, p_m^n \ge (p_m^n)^{\max} \end{cases}$$
(14)

定理2 博弈G_m的纳什均衡解是唯一的。

证明 需证明终端功率最佳响应为一个标准函数,即证明其具有正性、单调性、可量测性。定义 $P_m = \{p_m^{1*}, p_m^{2*}, \dots, p_m^{N*}\} \Rightarrow G_m$ 的纳什均衡点所对应 的终端功率策略矢量。 P_m^{-n} 表示小区n资源块m所 调度的终端 u_m^n 受到的干扰功率矢量,即 $P_m^{-n} = P_m - p_m^{n*}$ 。定义终端 u_m^n 在给定干扰功率矢量 P_m^{-n} 下 的功率最佳响应为 $r_{u_m^n}(P_m^{-n}) = p_m^{n*}$ 。

正性:终端对应的下行发射功率 $p_m^n > 0$,满足。 单调性:设给定 $P_m^{-n'} \ge P_m^{-n}$,则 $r_{u_m^n}(P_m^{-n})$ -

可量测性: $\forall \lambda > 1, u_m^n \in N$: 若 $r_{u_k^n}(P_m^{-n}) =$ $(p_m^n)^{\max}$, 由单调性得 $r_{u_k^n}(\lambda P_m^{-n}) > r_{u_k^n}(P_m^{-n})$ 。发射 功率满足 $p_m^n \le (p_m^n)^{\max}$, 则 $r_{u_k^n}(\lambda P_m^{-n}) = (p_m^n)^{\max}$, 且 $\lambda r_{u_k^n}(P_m^{-n}) - r_{u_k^n}(\lambda P_m^{-n}) = \lambda(p_m^n)^{\max} - (p_m^n)^{\max} =$ $(\lambda - 1)(p_m^n)^{\max} > 0$ 成立; 若 $\lambda r_{u_k^n}(P_m^{-n}) < (p_m^n)^{\max}$, 则 $\lambda r_{u_k^n}(P_m^{-n}) - r_{u_k^n}(\lambda P_m^{-n}) = (\lambda - 1) \left[\frac{B}{c_k^n \ln 2} - \frac{\tau \sigma^2}{G_{mk}^n} \right]$ 。 由 $p_m^n > 0$ 和式(15)可得

$$\frac{B}{k^{n} \ln 2} - \frac{\tau \left(\sum_{l=1, l \neq n}^{N} G_{mk}^{l} p_{m}^{l} + \sigma^{2}\right)}{G_{mk}^{n}} > 0, \text{ breek} \\ \sum_{l=1, l \neq n}^{N} G_{mk}^{l} p_{m}^{l} > 0, \text{ breek} \\ \frac{\Sigma_{l=1, l \neq n}^{N} G_{mk}^{l} p_{m}^{l}}{(P_{m}^{-n}) - r_{u_{k}^{n}} (\lambda P_{m}^{-n}) > 0, \text{ or } \mathcal{R}, \text{ or } \mathcal{R} \\ \frac{W_{n}}{m} \in N, \forall \lambda > 1, \text{ arg} \lambda r_{u_{k}^{n}} (P_{m}^{-n}) - r_{u_{k}^{n}} (\lambda P_{m}^{-n}) > 0, \text{ or } \mathcal{R} \\ \mathcal{R$$

3.2.3 算法步骤

(1)初始化:各小区分配资源块的M个终端均 分获取该小区基站的下行总发射功率,即 $p_m^n = \frac{P_{\text{max}}}{M}$, 各基站向小区内终端反馈其受到的同频干扰信息;

(2)各资源块分别进行功率分配博弈。对小区

n内分配到资源块m的终端 u_m^n ,给定上次迭代的干扰功率矢量 P_m^{-n} ,按照式(14)更新下行发射功率;

(3)重复步骤(2)迭代求解,直至分配给资源块 m的功率收敛到不动点: $|p_m^n(l) - p_m^n(l-1)| < \varepsilon$, $\forall n = 1, 2, ..., N$,若两轮迭代功率差值的绝对值均 小于一个极小的阈值,则认为收敛到均衡点,并决 策该资源块的最佳定价因子,该资源块的功率分配 完成;

(4)当系统所有资源块在决策出对应最佳定价 因子条件下都收敛到唯一的不动点后,to时隙系统 功率分配结束。调度时隙to系统信道资源调度与功 率分配分步优化完成,进入下一调度时隙的信道资 源调度。

4 仿真验证与分析

4.1 仿真参数设置和评价指标

4.1.1 仿真参数设置

设定仿真系统中存在7个基站,每个基站间距 离为500 m, 小区模型取Urban Macro模型且中心 载波频率取4 GHz^[20];系统整体带宽为70 MHz, 资源块带宽B为720 kHz, 子载波间隔为60 kHz^[21]; 各小区资源块数量M取90,各小区终端数量K取 100到140;终端到基站最小距离10m;基站下行发 射功率上限 P_{max} 取130 W^[20];路径损耗取 PL = $22.0 \lg d_{3D} + 28.0 + 20 \lg (f_c)$,其中 d_{3D} 为基站与所服 务的终端之间的距离, f。为载波频率; 译码错误率 ε_k^d 取10⁻⁷~10⁻⁴;噪声单边功率谱密度 N_0 取 -174 dBm/Hz; 数据包的长度n₀取256; TTI最小 调度粒度取0.25ms。另外,本文选取了电网业务中 3种典型应用,设定各类型业务的最大调度时延限 制,精准负荷控制、配电自动化、巡检控制分别为 2, 3, 4 slots。本文选取RR-AVE^[6], PF-AVE^[7,8], MAXCI-AVE^[9,10], αPF-AVE^[11]作为对比算法,验 证本文所提算法的性能。

4.1.2 评价指标

本文将从系统总吞吐量、系统公平性、平均等 待调度时延等方面进行性能对比以验证本文所提方 法更适用于具有多优先级调度需求的电网应用场 景。其中,除本文所提目标即可靠性约束下的系统 下行吞吐量外,为衡量所提资源调度算法能在追求 系统吞吐量最大化同时对系统中不同优先级终端实 现一定的调度公平性保证,利用Raj Jain公平指数^[22] 评价算法公平性。此外,电网的不同业务对时延提 出差异化需求,本文利用平均等待调度时延衡量本 文所提算法以及对比算法对不同电网业务的时延满 意度保障。

(1)系统吞吐量。系统吞吐量为所有小区内所

有终端的下行传输速率之和。小区n资源块m调度 的终端最大下行可达速率如式(2)所示;系统总吞 吐量如式(4)所示。

(2)系统公平性。利用Raj Jain公平指数定义系 统公平性因子η为

$$\eta_n = \frac{\left(\sum_{k=1}^{K} R_{n,k}\right)^2}{K \sum_{k=1}^{K} \left(R_{n,k}\right)^2}$$
(15)
$$\eta = \frac{\sum_{k=1}^{N} \eta_n}{N}$$
(16)

其中, R_{n.k}为小区n终端k在系统稳态时的平均速率。

(3)平均等待调度时延。假设每个小区共有的 K个电力终端,分为 K_O 个精准负荷控制业务终 端、 K_X 个配电自动化业务终端以及 K_Y 个巡检控制 业务终端,且满足 $K_O + K_X + K_Y = K$,3类业务 终端集合分别表示为O, X, Y。其中, $O = \{o(i) | i = 1, 2, ..., K_O\}$, $X = \{x(j) | j = 1, 2, ..., K_X\}$, $Y = \{y(g) | g = 1, 2, ..., K_Y\}$;业务终端o(i), x(j), y(g)得 到调度资源的次数表示为 $T_{o(i)}, T_{x(j)}, T_{y(g)}$;业务终 端o(i), x(j), y(g)每次等待调度的时间为 $v_{o(i)}, v_{x(j)}, v_{y(g)}$ 。

单个业务终端o(i), x(j), y(g)平均等待时延表 示为 $d_h, h \in \{o(i), x(j), y(g)\}$,具体计算方式为

$$d_h = \frac{\upsilon_h \times \sum_{t=1}^{T_h} t}{T_h} \tag{17}$$

由此可以计算各类业务终端的平均等待调度时 延表示为 $D_H, H \in \{O, X, Y\}$,具体计算方式为^[23]

$$D_H = \frac{d_h \times \sum_{l=1}^{K_H} l}{K_H} \tag{18}$$

4.2 非合作博弈功率策略迭代求解过程

系统中各资源块都对应一个非合作博弈过程, 由于已理论证明博弈过程的收敛性,这里随机选取 系统中1个资源块,观察该资源块所调度终端的功 率及传输速率变化情况来说明算法迭代过程。

可见当所有终端的功率策略迭代并最终趋于不 动点时,其收敛到一个稳定状态,该资源块的吞吐 量也收敛到一个均衡点。系统所有资源块都收敛时 系统达到均衡状态。在有限迭代次数下,各终端策 略很快收敛到一个纳什均衡上。从图1(b)可以看到, 迭代初始状态为小区终端均分基站下行功率,得到 初始终端下行传输速率,在最终达到稳态时大多数 终端的下行传输速率增加,可见本文非合作博弈功 率分配算法与功率平均分配方案相比,能减少小区 间同频干扰,提升系统吞吐量。

4.3 算法性能对比和分析

由图2可知,在系统吞吐量上基本服从:MAXCI 优于AVE,优于本文算法,优于PF-AVE,优于 RR-AVE,优于αPF-AVE;在系统公平性上: αPF-AVE优于RR-AVE,优于PF-AVE,优于本 文算法,优于MAXCI-AVE。本文算法(此处r取1) 考虑了各终端不同的信道条件和其已获得资源数 量,通过非合作博弈算法分配发射功率,降低小区 间干扰,显著增加了系统的吞吐量。由于本文提出 的算法根据电力终端的差异化QoS需求设置了不同 的调度优先级,因此较之传统的PF-AVE算法在一 定程度上牺牲了系统的公平性,但相比在吞吐量性 能表现最好的MAXCI-AVE算法,系统公平性因子 更高。综合来看,本文提出的算法在兼顾公平性与 电力终端QoS的同时,能够有效提升系统吞吐量。

图3中,每组条形表示不同小区终端数量情况

下不同算法的平均调度时延,依次为本文算法(时 延指数因子分别取r = 1,2,3)、PF-AVE算法和 αPF-AVE算法。不同颜色条形表示不同时延业务 等级,条形的总高度代表各等级终端平均时延之 和。另外,由于在最大载干比静态调度下,信道条 件好的终端可一直获得信道资源,而信道条件较差 的终端则一直无法获得调度,无法计算调度等待时 延;而轮询算法不区分终端的业务等级和信道条 件,平均调度时延是一样的,这两者都不在上图对 比范围中。

从图3中可以看到,随着小区终端数量的增加, 所有算法的平均调度时延呈上升趋势,这是因为信 道资源有限,随着待调度的终端增多,小区内各终 端等待调度的时延增加,因此系统整体的平均调度 时延也上升;本文算法根据电力业务QoS需求制定 了调度优先级,因此,调度优先级高的业务终端平 均等待时延更短,即平均调度时延上满足等级1少 于等级2少于等级3。而其他两种算法不同等级终端 的调度时延基本相同。另外,随着时延指数因子的 增大,系统整体时延增大,并且调度优先级较低的 业务的平均等待调度时延明显增加,实际应用中可

根据不同业务等级的具体时延需求调整时延指数 因子。

图4表示不同可靠性要求的URLLC系统吞吐量 对比情况,可以看出随着系统的可靠性要求提高, 即要求的传输错误概率降低,URLLC系统吞吐量 下降,说明对于超短包传输的数据速率与可靠性联 系密切。且随着小区终端数量增多,系统吞吐量下 降,为了保证调度的公平性,使得所有的终端都能 获得信道资源调度。

仿真结果说明本文资源分配机制在系统吞吐量 和公平性上取了一个合适的折中,在保证一定的调 度公平性的基础上提高系统的吞吐量;对于电力业 务中不同业务等级的终端不同的调度时延要求可以 做出相应的调度,满足多种业务的需求。因此本文 所提资源调度算法在保障电网业务通信质量场景应 用下有一定的优越性。

5 结束语

本文研究了面向电网业务质量保障的5G URLLC 无线资源调度问题,通过优化系统下行发射功率以 及合理调度信道资源来最大化系统吞吐量。首先根 据系统调度公平性以及电力业务的差异化,设定并 动态更新终端优先级并分配信道资源;其次,引入

图 3 不同业务等级终端平均调度时延的对比

图 4 不同可靠性要求下系统吞吐量的对比

基于定价机制的非合作博弈算法控制系统发射功 率,降低小区间干扰,提高5G URLLC系统的下行 吞吐量。仿真结果表明相比经典资源调度算法,本 文算法能够在兼顾不同业务终端服务质量需求与系 统公平性的同时,提高系统吞吐量,在多样电力业 务应用场景中具有一定的优越性。

参考文献

- SUN Chengjian, SHE Changyang, and YANG Chenyang. Energy-efficient resource allocation for ultra-reliable and low-latency communications[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1-6. doi: 10.1109/GLOCOM.2017.8254943.
- [2] SUN Chengjian, SHE Changyang, YANG Chenyang, et al. Optimizing resource allocation in the short blocklength regime for ultra-reliable and low-latency communications[J]. *IEEE Transactions on Wireless Communications*, 2019, 18(1): 402–415. doi: 10.1109/TWC.2018.2880907.
- [3] HU Yulin, OZMEN M, GURSOY M C, et al. Optimal power allocation for QoS-constrained downlink networks with finite blocklength codes[C]. 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018. 8377030.
- [4] SHEN Chao, CHANG T H, XU Hanqing, et al. Joint uplink and downlink transmission design for URLLC using finite blocklength codes[C]. The 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018: 1–5. doi: 10.1109/ISWCS.2018.8491069.
- [5] GE Xiaohu. Ultra-reliable low-latency communications in autonomous vehicular networks[J]. *IEEE Transactions on Vehicular Technology*, 2019, 68(5): 5005–5016. doi: 10.1109/ TVT.2019.2903793.
- [6] LEINONEN J, HÄMÄLÄINEN J, and JUNTTI M. Performance analysis of downlink OFDMA resource allocation with limited feedback[J]. *IEEE Transactions on Wireless Communications*, 2009, 8(6): 2927–2937. doi: 10. 1109/TWC.2009.071374.

[7] 潘甦,曹跑跑,刘胜美. 一种多无线电系统中基于公平性和精细化带宽分配的资源分配算法[J]. 电子与信息学报,2015,37(2):399-404. doi: 10.11999/JEIT140339.
PAN Su, CAO Paopao, and LIU Shengmei. A resource allocation algorithm based on proportional fairness and refined bandwidth allocation for multi-radio systems[J]. Journal of Electronics & Information Technology, 2015, 37(2): 399-404. doi: 10.11999/JEIT140339.

[8] RHEE J H, HOLTZMAN J M, and KIM D K. Scheduling of real/non-real time services: Adaptive EXP/PF algorithm[C]. The 57th IEEE Semiannual Vehicular Technology Conference, Jeju, Korea (South), 2003: 462–466. doi: 10.1109/VETECS.2003.1207583.

 [9] 张天魁,曾志民,张颖莹.基于博弈论的OFDMA系统多小区 功率协调分配算法[J].通信学报,2008,29(1):22-29.doi:10. 3321/j.issn:1000-436X.2008.01.004.

ZHANG Tiankui, ZENG Zhimin, and ZHANG Yingying. Multicell adaptive power allocation scheme based on game theory in OFDMA systems[J]. *Journal on Communications*, 2008, 29(1): 22–29. doi: 10.3321/j.issn:1000-436X.2008. 01.004.

- [10] 仲崇显,李春国,杨绿溪.基于非合作博弈论的多小区 OFDMA系统动态资源分配算法研究[J].电子与信息学报, 2009, 31(8): 1935–1940. doi: 10.1016/j.apm.2007.10.019.
 ZHONG Chongxian, LI Chunguo, and YANG Lüxi. Dynamic resource allocation algorithm for multi-cell OFDMA systems based on noncooperative game theory[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1935–1940. doi: 10.1016/j.apm.2007.10.019.
- [11] 何学文. OFDM系统中资源分配技术研究[D]. [硕士论文], 上 海交通大学, 2009.
 HE Xuewen. Research on Resource allocation technology of OFDM system[D]. [Master dissertation], Shanghai Jiao Tong University, 2009.
- [12] NASIR A A. Min-max decoding-error probability-based resource allocation for a URLLC System[J]. *IEEE Communications Letters*, 2020, 24(12): 2864–2867. doi: 10. 1109/LCOMM.2020.3015688.
- [13] 谢显中,黎佳,黄倩,等. 机器类通信中基于NOMA短编码块 传输的高可靠低迟延无线资源分配优化方案[J]. 电子与信息 学报, 2019, 41(11): 2549–2556. doi: 10.11999/JEIT190128.
 XIE Xianzhong, LI Jia, HUANG Qian, et al. Optimal scheme of resource allocation for ultra-reliable and lowlatency in machine type communications based on nonorthogonal multiple access with short block transmission[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2549–2556. doi: 10.11999/JEIT190128.
- [14] GHANEM W R, JAMALI V, SUN Yan, et al. Resource allocation for multi-user downlink MISO OFDMA-URLLC systems[J]. *IEEE Transactions on Communications*, 2020, 68(11): 7184–7200. doi: 10.1109/TCOMM.2020.3017757.
- [15] FENG Lei, LI Wenjing, LIN Yingxin, et al. Joint computation offloading and URLLC resource allocation for collaborative MEC assisted cellular-V2X networks[J]. IEEE Access, 2020, 8: 24914–24926. doi: 10.1109/ACCESS. 2020.2970750.

- [16] KHAN J and JACOB L. Availability maximization framework for CoMP enabled URLLC with short packets[J]. *IEEE Networking Letters*, 2020, 2(1): 1–4. doi: 10.1109/ LNET.2020.2974894.
- [17] LIBRINO F and SANTI P. Resource allocation and sharing in URLLC for IoT applications using Shareability graphs[J]. *IEEE Internet of Things Journal*, 2020, 7(10): 10511–10526. doi: 10.1109/JIOT.2020.2999645.
- [18] GHANEM W R, JAMALI V, ZHANG Qiuyu, et al. Joint uplink-downlink resource allocation for OFDMA-URLLC MEC systems[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–7. doi: 10.1109/ GLOBECOM42002.2020.9348027.
- [19] FENG Lei, ZI Yueqi, LI Wenjing, et al. Dynamic resource allocation with RAN slicing and scheduling for uRLLC and eMBB hybrid services[J]. *IEEE Access*, 2020, 8: 34538–34551. doi: 10.1109/ACCESS.2020.2974812.
- [20] 3GPP. TR 38.802 v14.2. 0-2017 Study on new radio access technology Physical layer aspects[S]. 2017.
- [21] FAXÉN L. A study on segmentation for ultra-reliable lowlatency communications[D]. [Master dissertation], Linköping University, 2017.
- [22] ROCHIM A F, MUIS A, and SARI R F. A discrimination index based on Jain's fairness index to differentiate researchers with identical H-index Values[J]. Journal of Data and Information Science, 2020, 5(4): 5–18. doi: 10. 2478/jdis-2020-0026.
- [23] YU Baoquan, WU Dan, CAI Yueming, et al. Resource allocation for massive machine type communications in the finite blocklength regime[J]. China Communications, 2021, 18(3): 240–250. doi: 10.23919/JCC.2021.03.019.
- 丰 雷: 男,1987年生,副教授,主要研究方向为无线网络管理、 物联网资源调度.
- 谢坤宜: 女,1997年生,博士生,研究方向为无线网络管理、物联 网资源调度.
- 朱 亮: 男,1996年生,硕士生,研究方向为无线网络管理、物联 网资源调度.
- 邱雪松: 男,1973年生,教授,主要研究方向为通信网络管理、通 信软件.
- 郭少勇: 男,1985年生,副教授,主要研究方向为能源互联网、区 块链技术.

责任编辑: 马秀强